ⁱ Information

Department of Physics

Examination paper for TFY4210/FY8916 Quantum theory of many-particle systems

Academic contact during examination: Øyvind Sande Borck Phone: 408 59 107 Examination date: 22.05.2019 Examination time (from-to): 15 - 19 Permitted examination support material: Support material code C: Approved calculator Rottman: Matematisk formelsamling Barnett & Cronin: Mathematical Formulae

Other information:

Students will find the examination results in Studentweb. Please contact the department if you have questions about your results. The Examinations Office will not be able to answer this.

¹ Problem 1-1

In the lectures we discussed a tight-binding approximation (TBA) for graphene (see figure above) with a Hamiltonian given by

$$H=t\sum_{j}\sum_{l=1}^{3}\left(a_{j}^{\dagger}b_{j+l}+b_{j+l}^{\dagger}a_{j}
ight)$$

Questions:

Give **short** answers to each of the questions below:

a) Which assumptions are made in this approximation?

b) Define/explain the symbols $t,~a_j^\dagger,~a_j,b_{j+l}$ and b_{j+l}^\dagger that goes into this Hamiltonian.

Fill in your answer here

Maximum marks: 4

We continue our study of the Hamiltonian:

$$H=t\sum_{j}\sum_{l=1}^{3}\left(a_{j}^{\dagger}b_{j+l}+b_{j+l}^{\dagger}a_{j}
ight)$$

Assume periodic boundary conditions, introduce new operators $a_{\mathbf{k}}, b_{\mathbf{k}}$ via a Fourier transform

$$egin{aligned} a_j &= rac{1}{\sqrt{N}} \sum_{f k} e^{if k\cdot {f r_j}} a_{f k} \ b_j &= rac{1}{\sqrt{N}} \sum_{f k} e^{if k\cdot {f r_j}} b_{f k} \end{aligned}$$

where $oldsymbol{N}$ is the number of unit cells, and show that the Hamiltonian can be written in the form

$$H = \sum_{\mathbf{k}} \begin{pmatrix} a_{\mathbf{k}}^{\dagger}, b_{\mathbf{k}}^{\dagger} \end{pmatrix} \begin{pmatrix} 0 & tS(\mathbf{k}) \\ tS^{*}(\mathbf{k}) & 0 \end{pmatrix} \begin{pmatrix} a_{\mathbf{k}} \\ b_{\mathbf{k}} \end{pmatrix}$$

Here $S(\mathbf{k}) = \sum_{l=1}^{3} e^{i\mathbf{k}\cdot\boldsymbol{\delta}_{l}}$, where $\boldsymbol{\delta}_{l}$ are nearest neighbour vectors (see figure above).

TFY4210/FY8916_V19 Fill in your answer here

Maximum marks: 10

³ Problem 1-3

The figure above shows a plot of the band structure of graphene calculated within this TBA. We shall consider the electronic states near the K-point. In the 'first-quantized' formalism, the tight-binding Hamiltonian for graphene is

$$h(\mathbf{k}) = egin{pmatrix} 0 & tS(\mathbf{k}) \ tS^*(\mathbf{k}) & 0 \end{pmatrix} \,,$$

In the lecures it was shown that close to the K-point

$$S({f q})pprox {3a\over 2}(q_x-iq_y)$$

where ${f q}$ is a small wave-vector near ${f K}$, that is ${f k}={f K}+{f q}$ and $|{f q}|\ll |{f K}|$.

Problem:

TFY4210/FY8916_V19

Show that the effective Hamiltonian for states near ${f K}$ takes the form

$$h(\mathbf{q})=\hbar v_{\mathrm{F}}(\sigma_x q_x+\sigma_y q_y)$$

where σ_x and σ_y are the Pauli matrices $\sigma_x=$

$$\sigma_x=egin{pmatrix} 0&1\ 1&0 \end{pmatrix}$$
 and $\sigma_y=egin{pmatrix} 0&-i\ i&0 \end{pmatrix}$. Give the

expression for $v_{
m F}$.

Fill in your answer here

Format	- B	ΙU	X _e X ⁱ	1 <u>T</u> x b	• 9 II	:= Ω	ΞΞ 🖉 Σ	₩7- 120	
									Words: 0

⁴ Problem 2-1

Consider the Dirac equation for a free spin $-\frac{1}{2}$ particle in three spatial dimensions

$$(i\hbar\gamma^\mu\partial_\mu-mc)\,\Psi=0$$

where γ^{μ} are the four Dirac γ -matrices, $\partial_{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right)$ is the covariant four-derivative and Ψ is a four-component spinor.

Problem:

Express Ψ in terms of two two-compent spinors φ_A and φ_B , and show that for a massless particle (m = 0), the Dirac equation can be decoupled into the two *Weyl equations*

$$i\hbarrac{\partialarphi_{\pm}}{\partial t}=\pm coldsymbol{\sigma}\cdot\mathbf{p}arphi_{\pm}$$

where $\varphi_{\pm} \equiv \varphi_A \pm \varphi_B$, $\boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ are the Pauli matrices, and $\mathbf{p} = -i\hbar \nabla$.

Fill in your answer here

⁵ Problem 2-2

In two spatial dimension the Weyl-equation for $arphi_+$ can be expressed in terms of only two of the Pauli matrices, for example:

$$i\hbarrac{\partialarphi_+}{\partial t}=c(\sigma_x p_x+\sigma_y p_y)arphi_+$$

Problems:

- a) Show that the energy eigenvalues for this equation are $E_{\pm}=\pm c|\mathbf{p}|$
- b) Compare the Hamiltonian in this equation with the effective hamiltonian for graphene near
- the K-point in problem 1-3 and comment.

Fill in your answer here

Maximum marks: 10

Problem 2-2 (Correction)

In two spatial dimension the Weyl-equation for $arphi_+$ can be expressed in terms of only two of the Pauli matrices, for example:

$$i\hbarrac{\partialarphi_+}{\partial t}=c(\sigma_xp_x+\sigma_yp_y)arphi_+$$

Problems:

a) Show that the energy eigenvalues for this equation are $E_{\pm}=\pm c|\mathbf{p}|$

for a free particle with plane-wave solutions of the form

$$\varphi_{+} = N e^{-\frac{i}{\hbar}(Et - \mathbf{p} \cdot \mathbf{r})}$$

⁶ Problem 3-1

Consider a system of noninteracting electrons. In the 'second-quantized' formalism the Hamiltonian is given by

$$H_0 = \sum_
u \xi_
u c^\dagger_
u c_
u$$

where u is a set of quantum numbers, $\xi_{\nu} = \varepsilon_{\nu} - \mu$, and μ is the chemical potential.

The Matsubara single-particle Green function is defined as

$$\mathcal{G}(
u, au) = -ig\langle T_{ au}(c_
u(au)c_
u^\dagger(0))ig
angle$$

Here $\tau \in \langle -\beta, \beta \rangle$, (where $\beta = 1/(k_B T)$ is the inverse temperature), and T_{τ} is a time-ordering operator which orders operators with earliest (imaginary) time τ to the right, introducing a minus sign when reordering is needed. The time-dependence of the operators is given by

 $c_
u(au)=e^{-H_o au}c_
u e^{H_o au}=e^{-\xi_
u au}c_
u$

The Fourier transform of $\mathcal{G}(
u, au)$ is given by

$$\mathcal{G}(
u,ip_n)=\int_0^eta\,d au\,e^{ip_n au}\mathcal{G}(
u, au)$$

where $p_n = (2n+1)\pi/\beta$ is a fermionic Matsubara frequency ($n \in \mathbb{Z}$). **Problem:**

Calculate the Matsubara Green function for noninteracting electrons, $\mathcal{G}^{(0)}(\nu, ip_n)$, and use the result to obtain the retarded Green function $G_0^R(\nu, \omega)$.

Fill in your answer here

⁷ Problem 3-2

Consider electrons scattering with (randomly distributed) impurities in a metal. Neglect the electron spin. In the lecures we developed a perturbative expansion for the single-particle Matsubara Green function $\mathcal{G}(\mathbf{k}, \mathbf{k}'; ip_m)$ for such a system. By averaging over the position of the impurities, we obtained a Green function which was diagonal in $\mathbf{k} : \overline{\mathcal{G}}(\mathbf{k}, \mathbf{k}'; ip_m) = \overline{\mathcal{G}}(\mathbf{k})\delta_{\mathbf{kk}'}$.

Question:

Explain why we should expect, on physical grounds, that such an averaging will make the Green function diagonal in \mathbf{k} .

Fill in your answer here

⁸ Problem 3-3

The figure above shows two of the Feynman diagrams in the perturbation expansion for $\overline{\mathcal{G}}(\mathbf{k},ip_m)$.

Questions:

- a) For each diagram, determine whether the diagram is reducible or irreducible.
- Justify your answer. b) Give the mathematical expression for diagram A
 - (Do not evalute the wave vector sum).

Fill in your answer here

⁹ Problem 3-4

The spectral function $A({f k},\omega)$ is defined as

$$A({f k},\omega)=-rac{1}{\pi}{
m Im}G^R({f k},\omega)$$

where $G^{R}(\mathbf{k}, \omega)$ is the retarded Green function. In the lectures it was shown that in the limit of low impurity density n_{imp} and weak scattering potential u, the retarded Green function is given by

$$\overline{G^R}({f k},t)=-i heta(t)e^{-i(\xi_{f k}+n_{
m imp}u)t}e^{-t/(2 au)}$$

where $1/ au=2\pi n_{
m imp}u^2D(0)$ (here D(0) is the density of states at the Fermi level).

Problems

a) Calculate the spectral function for this Green function, and show that it is given by

$$ar{A}({f k},\omega)=rac{1}{\pi}rac{1/(2/ au)}{(\omega-(\xi_{f k}+n_{
m imp}u))^2+(1/(2 au))^2}$$

b) Show that this spectral function satisfy the sum rule:

$$\int_{-\infty}^{\infty} d\omega ar{A}({f k},\omega) = 1$$

Fill in your answer here

•

Format	~	В	I	U	\mathbf{X}_{e}	× ^e <u>T</u> _x	6	~ *	9 I	0=	Ω⊞	and the second s	Σ	ABC-	\mathbb{Z}	
																Words: 0