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Problem 1 Consider a tight-binding Hamiltonian with nearest-neighbor hop-
ping t and next-nearest neighbor hopping t′ on a general two dimensional Bravais
lattice with N lattice points, in contact with a particle reservoir. All other hopping
matrix elements may be ignored. The chemical potential of the system is denoted
µ. The Hamiltonian is given by

H = −
∑
i,j,σ

tij c
†
i,σcj,σ − µ

∑
i,σ

c†i,σci,σ

where tij are the hopping matrix elements between lattice sites i and and j. Here,
(c†i,σ, ci,σ) create and destroy particles in spin-state σ on site i. Introduce Fourier-
transformed operators

c†k,σ = 1√
N

∑
i

c†i,σ e
−ik·ri

ck,σ = 1√
N

∑
i

ci,σ e
ik·ri

where ri is the position at lattice site i. The lattice constant may be set to unity.

a) Show that Hamiltonian may be written on form

H =
∑
k,σ

Ek c
†
k,σck,σ

and give an expression for Ek for a general two-dimensional Bravais lattice.

b) Specialize to the case of a two-dimensional square lattice, and give the ex-
pression for Ek in this case.

Hint: To simplify the expression in b), you may find the following identity useful:

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b)

c) Set µ = 0 and sketch the Fermi-surface qualitatively for t′ = 0 and t′ > 0 in the
2D Brillouin-zone.

d Derive an equation determining the average number of particles per lattice site
as a function of µ.
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Problem 2 A model for an antiferromagnetic insulator is a Heisenberg Hamil-
tonian with nearest neighbor exchange interaction and easy-axis anisotropy defined
on a two-dimensional square lattice

HAFMI = −J
∑
〈i,j〉

Si · Sj −K
∑
i

S2
iz

Here, J < 0 and K > 0.

a) Use the Holstein-Primakoff transformation to find the magnon-spectrum for
the model given above, calculating to quadratic order in magnon-operators.

Hint: You may find it helpful to use relevant results from the lectures (K = 0).
You do not need to present a derivation of the latter.

b) Consider low temperatures, and compute the temperature-corrections to the
magnetization.

c) Give a brief physical explanation for the result you find in problem b.


