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Problem 1 (Points: 5+10+10+10+10+5=50)

An antiferromagnetic insulator on a 2D square lattice may be modelled by a
Hamiltonian with nearest neighbor exchange interaction J

HAFMI = −J
∑
〈i,j〉

Si · Sj −K
∑
i

S2
iz

Here, J < 0 , and K > 0. The operators Si are spin-operators, and 〈i, j〉 means
that the lattice sites i and j are nearest neighbors.

a) Give a physical interpretation of the K-term in the Hamiltonian.

b) Use the Holstein-Primakoff transformation used in class for this case to find
the excitation-spectrum for the magnons of the model given above, calculating to
quadratic order in magnon-operators. Sketch the spectrum for small momenta.
(The case K = 0 is solved in the lecture notes. A solution for the case K = 0 only
will therefore not receive any ponts, but you can use the K = 0-solution to aid
you in finding the K 6= 0-solution).

c) We now add an external uniform magnetic field h to the system, such that
the Hamiltonian is given by

HAFMI = −J
∑
〈i,j〉

Si · Sj −K
∑
i

S2
iz − h

∑
i

Siz

with h > 0. Express the added terms in Fourier-space using the magnon-operators
that diagonalize the problem for h = 0.

d) Compute the magnon-spectra for h > 0.

e) For K > 0, h > 0, find the maximum value of h > 0 for which the magnon-
spectra are meaningful.

f) Give a physical interpretation of what happens when h exceeds this limit. (This
question can be answered even without having obtained a detailed answer in e)).
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Problem 2 (Points: 10+10+10+10+10=50)

A model of bosonic particles on a 2D square lattice with NL lattice points, is
given by

H = −t
∑
〈i,j〉

a†
iaj + U

2
∑
i

ni(ni − 1)

where ni = a†
iai and the a-operators are bosonic creation and destruction opera-

tors. We have (t, U) > 0, and 〈i, j〉 indicates that lattice sites i and j are nearest
neighbors.

a) Explain what the various terms in the Hamiltonian describe.

b) Introduce Fourier-transformed operators

ak = 1√
NL

∑
i

ai exp(ik · ri)

where ri is the position of lattice point i. Show that the Hamiltonian may be
written on the form

H =
∑
k

εka
†
kak + 1

2
∑

k1,...,k4

Uk1k2k3k4a
†
k1a

†
k2ak3ak4δk1+k2,k3+k4

where δk,k′ is a Kronecker-delta, and give expressions for εk and Uk1k2k3k4 . Give a
physical interpretation of the constraint on the summations over k1, ..k4.

c) This system may undergo Bose condensation at sufficiently low temperatures,
whereby a macroscopic number of particles occupy the lowest possible energy state.
Let the total number of particles be N , and let the number of particles in the low-
est possible energy state be N0. Give an expression for the condensate fraction
N0/N , stating the conditions under which the expression applies.

d) Compute the temperature dependence of the correction to the condensate frac-
tion, at low temperatures in d dimensions.

e) What is the lowest dimension one can have Bose-condensation at T > 0 in
the Bose Hubbard model with U > 0?∫ ∞

0
dx

xα

ex − 1 = ζ(α + 1)Γ(α + 1)

where ζ,Γ are the Riemann zeta-function and Gamma-function, respectively.


