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Problem 1: Tight-binding model (Points: 10+10+5+10+5=40)

Consider a two-dimensional square lattice with dimensions L × L. We take the
lattice constant to be a = 1, so there are in total N = L2 lattice sites. There is
one atomic orbital at each lattice site, where each orbital can contain up to two
electrons with opposite spins. To describe the spin-� electron state at lattice site i,
we use the usual creation operator c†i� and annihilation operator ci�. In terms of
these second-quantized operators, we consider the tight-binding Hamiltonian

ℋ = −�
∑

i�
c†i�ci� − t

∑

⟨ij⟩�
c†i�cj� − ℎ

∑

i
(c†i↑ci↑ − c†i↓ci↓), (1)

where t is the nearest-neighbor hopping amplitude, � is the chemical potential,
and ℎ is an exchange splitting.

(a) We will now introduce the Fourier-transformed operators

c†k� =
1
√
N

∑

i
c†i� exp(−ik ⋅ ri), ck� =

1
√
N

∑

i
ci� exp(+ik ⋅ ri), (2)

where ri is the location of lattice site i. Show that the provided Hamiltonian
can then be written purely in terms of the number operators nk� = c†k�ck�,

ℋ =
∑

k�
Ek�nk�, (3)

and derive a closed analytical expression for the excitation energy Ek�.

(b) Show that to order O(k2), the dispersion relation can be approximated as
free electrons with an e�ective massm∗. Sketch the two curves Ek↑ and Ek↓
as functions of |k|, and comment on the physical interpretation of ℎ.

(c) Write an expression for the expectation value ⟨nk�⟩ for the number of elec-
trons with quantum numbers (k, �). Express your answer in terms of Ek�.

(d) If we collect the annihilation operators ci� at every lattice site into a single
vector c = (c1↑, c1↓, … , cN↑, cN↓), we can rewrite eq. (1) in matrix form:

ℋ = c†Hc. (4)

Write an explicit expression for the elementsHi�,j�′ of the resulting matrix.
[Hint: You may want to �rst express i in terms of 2D coordinates (xi, yi),
and then expressHi�,j�′ in terms of these coordinates.]

(e) Let us now consider the density of states of the system, which we de�ne as

D(E) = 1
N
∑

n
�(E − En), (5)

where { En } are the excitation energies of the system. Explain (brie�y!) how
one can numerically calculate the density of states. This includes (i) how to
determine { En } and (ii) how to evaluate

∑
n �(E − En) afterwards.
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Problem 2: Heisenberg model (Points: 5+10+10+5=30)

Consider a system of localized spins on a two-dimensional square lattice with
lattice constant a = 1. The spin at lattice site i is denoted Si, and the magnitude
of each spin is given by S2i = S2. This system can be described via the model

ℋ = −J
∑

⟨i,j⟩
Si ⋅ Sj, (6)

where the exchange parameter J is a non-zero real number.

(a) Sketch the classical ground state of the system for (i) J > 0 and (ii) J < 0.
How do the ground states change in a quantum-mechanical treatment?

(b) We now focus on the case J > 0. Use a leading-order Holstein–Primako�
transformation to expressℋ in terms of the bosonic operators ai and a

†
i .

(c) Fourier-transform the bosonic operators ai and a
†
i , and show that this diag-

onalizes the Hamiltonian in the formℋ = E0 +
∑

q Eqnq where nq = a†qaq.

(d) Write an expression for the expectation value ⟨nq⟩ for the number ofmagnons
with wave vector q at any given time. Express your answer in terms of Eq.

Problem 3: Feynman diagrams (Points: 5+5+5+10+5=30)

In this problem, we will consider the Feyman diagram method of performing
perturbative calculations for systems with weak electron–phonon interactions.
For this exercise, you might want to consult the attached list of Feynman rules.

(a) Sketch all diagrams up to order O(g4) that contribute to electron–electron
scattering. Draw each relevant diagram with the external legs.

k2, �2

k1, �1

k′2, �
′
2

k′1, �
′
1

?

(b) Sketch all diagrams up to order O(g4) that contribute to the interacting
electron propagator G(k, �). Include all diagrams, not just the ones that
contribute to the electron self-energy. Draw them with the external legs.

k, � k, �?



TFY4210/FY8302 Final Exam 2023 Page 3/5

(c) Explain using diagramswhywe only have to include amputated one-particle
irreducible diagrams in the electron self-energy Σ(�, k). [Hint: Expand the
Dyson equation G = G0(1 − ΣG0)−1 to O(Σ2) and sketch relevant terms.]

(d) We now focus on the lowest-order contribution to the electron self-energy Σ:
the O(g2) contribution. Write down the integral representation of this
Feynman diagram, perform the energy integration explicitly, and show that
the result can be written Σ(k, �) = ∑

q |gq|
2 I(�, k, q) for some function I.

(e) Consider now the following higher-order contribution to Σ(k, �). Write
down the integral representation of this diagram. (Note: You do not have to
perform any integration in this task. Moreover, you can express the results
in terms of G0 and D0; there is no need to insert their de�nitions here.)

k, � k, �
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Equations
The meaning and validity of each symbol and equation is assumed to be known. The
equations are in natural units ℏ = kB = 1, which you can use throughout this exam.

• Bosons:
[a�, a�′] = 0, [a�, a

†
�′] = ��,�′ , [a†�, a

†
�′] = 0.

• Fermions:
{
c�, c�′

}
= 0,

{
c�, c

†
�′
}
= ��,�′ ,

{
c†�, c

†
�′
}
= 0.

• Spins:
[Sn, Sm] =

∑

l
i�nmlSl, [Sz, S±] = ±S±, S± = Sx ± iSy .

• Pauli matrices:
� = �1ex + �2ey + �3ez, (a ⋅ �)(b ⋅ �) = (a ⋅ b)�0 + i(a × b) ⋅ �;

�0 = (1 0
0 1) , �1 = (0 1

1 0) , �2 = ( 0 −i
+i 0 ) , �3 = (+1 0

0 −1) .

• Dirac delta function:

∫ dx f(x) �(x − x′) = f(x′), lim
�→0+

�
�2 + x2

= ��(x).

• Kronecker deltas:
N∑

n=1
fn�n,m = fm,

N∑

n=1
exp[i(k − k′) ⋅ rn] = N�k,k′ .

• Holstein–Primako� transformation:

Si+ =
√
2S − a†i ai ai , Si− = a†i

√
2S − a†i ai , Siz = S − a†i ai .

• Fermi–Dirac and Bose–Einstein statistics:

fFD(E) =
1

exp(E∕T) + 1
, fBE(E) =

1
exp(E∕T) − 1

.

• Residue integration:

lim
r→∞

∮
Γ(r)

dz ( 1
z − � + i0+ ⋅ 1

z − � + i0+ ) = 0,

lim
r→∞

∮
Γ(r)

dz ( 1
z − � + i0+ ⋅ 1

z − � − i0+ ) =
2�i
� − � ,

lim
r→∞

∮
Γ(r)

dz ( 1
z − � − i0+ ⋅ 1

z − � + i0+ ) =
2�i
� − � ,

lim
r→∞

∮
Γ(r)

dz ( 1
z − � − i0+ ⋅ 1

z − � − i0+ ) = 0.

The contour Γ(r) goes from z = −r to z = +r along the real line, and then follows
the path z = rei� in the complex plane from � = 0 to � = �.
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Feynman rules
To order O(g2n) in the electron–phonon interaction gq, the Feynman rules are:

• Draw all topologically distinct diagrams with at most 2n vertices. Remember that
only amputated one-particle irreducible diagrams contribute to self-energies.

• For each line and vertex that appears in a diagram, assign the following factors:
q, !

D0(q, !) =
1

! − !q + i0+ − 1
! + !q − i0+

k, �
G0(k, �) =

�(�k − �F)
� − �k + i0+ + �(�F − �k)

� − �k − i0+

k, �

k′, �′

q, ! gq

• Ensure that momentum and energy is conserved at each vertex. In some cases,
the results can afterwards be further simpli�ed using g−q = g∗+q.

• Give each diagram a prefactor in(−2)l, where n comes from the order O(g2n) of
the diagram and l is the number of closed electron loops in the diagram.

• Integrate or sum over all internal energy and momentum variables. Each energy
integral that is introduced in this process comes with a prefactor 1∕2�.

When evaluating Feynman integrals, you are allowed to assume without proof that the
entire integrand vanishes at complex in�nity.


