Solutions to the final exam

TFY4210 — Applied quantum mechanics
May 23, 2007

Problem 1

a) The functionalF’[n] is said to beuniversal because it is independent of the
external potential.,; and does not refer to a specific system. This implies
that the samé’[n] is to be used foall electron structure problems, whether
the calculation involves only a single atom or a moleculeodasd on a
metal surface.

b) Normalising:
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SoC = N/(87R?), and

N —r
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It is a good idea to check the unit§R] = m, so the electronnumber)
density has the correct unit] = m=3.

c) We first calculater,;:
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(Units: A, o< i?/m,, s0[A,] = J?s? /kg = Jm? and[Trr] = Jm?*m ™2

We finally calculate the Hartree energy:

Eu(R) = o /drldrzw
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Introducing the new parametess = Rr; ands, = Rrs:

62 N2 e_(sl+s2)
Fy(R) = ———— [ ds;dsg———
w() = Grye, R/ e r—

Then we use the expansion (given on page 5 of the exam set):
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whens, > s;, and withs; ands, interchanged wher, < s;. Our trial
electron density:(r) is independent of angles, so the integration over the
angles is easy. Only the spherical harmonics depend on tilesaiso
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Since
/ A2 Yo (01, 61) = vz / A0, Y (61, 61)Yom (01, 1)
= VAT0,00m.0
we get
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The radial integration must be split into two parts, one with< s; and one
with sy > s1:
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(Units: [Ey] = [e?/(c,R)] = C?/(C?J'm~!m) = J)
d) We can find an approximation for the ground state energy ioynnising
E(R) = Eex(R) + Trr(R) + Eu(R)
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Here | have introduced .

B 3_2477'60 .
We first find the valueR,,,;, that minimiseE'( R):

Ck

OE(R) N N5/3
—_— =0=(C1Z —CxN) —— — 20y3——
aR R=Rmin ! (Cl Ck ) Rlznin C2 R?nin
which gives us:
_ 20,N?3
Buin = & 7 =GN

Substituting this value in equation (1), we get our appration for the
ground state energy as a function/éfand 7
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The approximation for the ground state electron density is:

N /R
n(T, N7 Z) = 87TR3 € [ Hin

min

_ (C1Z — CyN)? o~ (C17-CyN) /(202 N?/3)
64T NC3

e) Neutral atom)N = Z:

(C1Z — CZ)?
Cs
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Eus(Z,2) = —121/3



Our value forCs is

1(Cy — Cy)?
C-= =
TG
1ot (1 5\%125(8m)*3
S 416722 \2  32) 27 A,

54112 / 8 \ 2 etm,
e ()

~1.7818 -107'% J
Converted to the Rydberg unit:
C3 =0.81740 Ry

So, with our choice of trial electron density we are almosv¥eSid error
compared to the exact value. At least we have found an uppértb the
ground state energy (as expected for a variational apptatkom):

EXRP* = —0.81740 Z7/3 Ry

g) For a neutral atom our approximation to the electron dgmnsi

Z2 3
n(r,Z) = —87 e 2’
T

where

1375 e (8m)2/3

~ 4.4936 - 10" m™!
1728 4mzy A, o

v =(C, = Cy)/(2C;) =

which is larger than zero, so our approximate electron dgrsa exponen-
tially decreasing function of. Figure 1 shows plots of the electron density
(more precisely the radial distribution of electrofisr?n(r)) for Xe. The
plot on the left hand side shows the result of a (much) moreigee DA
(local density approximation) calculation (Note that theywe used atomic
units, so the values along theaxis differ in the two plots) and on the right
hand side is a plot of our electron density. As you can seegetaatron
density lacks the shell structure seen in the LDA-plot.

h) In our approximation we have

— not included the exchange energy-contribution to the totatgne
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Figure 1:

— not included the electron correlation-contribution to theat@nergy.

— used a rather crude approximation for the kinetic energyua®ed that
it is equal to the kinetic energy of a non-interacting electgas (ideal

Fermi gas).

Problem 2

a) Our starting point is

whereH = c¢y/p? for a massless particle. Can the square root be linearised?

whereq; (with i = 1,2, 3) are unknown quantities to be determined. Take

ov
ih— = HU
lﬁﬁt

VP? = a1p1 + aaps + asps

the square of each side of this equation:

Pi + 3+ p3 = aip} + asps + asp; +

+(oa + ason )pips + (aras + asaq)pips + (asas + azas)paps

The right and left hand side are equal if the quantitiesatisfy theanti-
commutator relations

aiaj + ajai = {Ozl-, Ozj} = 26”

where);; is the Kroenecker delta. In additien must be hermitiamyf =
(so thatH is hermitian). Other properties:
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b)

1. o? = 1 so the eigen values of; must bed-1.

2. Troy; =0
Proof: (shown only fory;)

Tra; = Tr(a103) = Tr(apagas) = — Tr(aja;) = — Trog

which implies thatTra; = 0. Here | have used the fact thag
anda, anti-commute, and that the trace is cyclic (i'€(ABC) =
Tr(BCA) = Tr(CAB), etc, for matricesA, B andC).

3. The dimension ofy; must beeven, i.e. D = 2n wheren = 1,2, 3, ...
This follows from the propertylr o; = 0 and the fact that the eigen
values toa; are+1 (the trace of a matrix is equal to the sum of its
eigen values).

Thus, we get the following equation

ov h
i — HU = ca - pU = “a - VU
ot i
wherea = (a1, as, a3) are2n-dimensional matrices with the above men-
tioned properties. This is of course exactly the same eguas we get if
we putm = 0 in the Dirac equation.

We needhree hermitian and mutually anti-commuting matrices. The Pauli
matrices are three such matrices, so in this case we can&hoes o.
We then get the following two equations (when we do not folyeth signs
E = %c/p):

8_\11 = +dco - VU

ot
We cannot use the Pauli matrices when = 0, because we then neéalr
hermitian, anti-commuting matrices. Assume to the cowtthat there is

such a fourth matrix:
. fal”
7=\ b-a

This matrix is hermitian andr & = 0. It must anti-commute withr:

LA) G =-(5)GY)

By multiplying the matrices we get

(50 =(20)
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thusa = 0:

. (0b

7= \bo
Our matrix must also anti-commute with,.. It is easy to show that this
demand implie$* = —b, so

o = constant x ( )

1
L0 ) = constant X g,

and soc will not anti-commute witho,. It is therefore not possible to
find four mutually anti-commuting, hermitiad x 2-matrices, and we can
therefore not use the Pauli matrices when# 0.

c) Assume a plane-wave solution:

wherew is a two-component spinor. Then we find from on of the Weyl
equations:
Fu=co -pu

Written on matrix form:
E+cp, c(p,+ipy) uy _,
C<px - ipy) E — CP, Uy
This equation has non-trivial solutions only if the detemamt of the sys-
tem’s matrix is zero:

(E+ cp.)(E — cp.) — A (ps + ipy) (pe — ipy) =0

which yields:
E2 _ 02p2 -0
or equivalentlyF = +pc.
Problem 3
a) — eg, aretwo @ = 1,2) unit polarisation vectors normal to each other.

- aLA anday , are creation and annihilation operatora?,LA creates a

photon in the modék, \), while oy , destroys a photon in the mode
(k, A).

Coulomb gauge

h

—V-A =i k-
0=V IZ( €ic) 2V epwi

K\

(a'k,)\ e1k-r o a;r{ \ e—lk-r)



which implies
k- €\ = 0

so the polarisation vectors, ; andey » are normal to the wave vect&t
b) Now
V- (Ar)f(r)) = (V-Ar))f(r) + A(r) - V[f(r)
so choosing Coulomb gaug¥ ( A = 0) we get

V- (A(r)f(r)) = A(r) - Vf(r)

thusp and A commute when we use the Coulomb gauge, so
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(2A -p) +
2
— EA . p + 6_A2
m 2m
c) In the case of spontaneous emission there is one extrampithe final
state compared to the initial state. [bavest order we therefore mustinclude
the term which is linear in the creation opera&z@,rx, i.e.e/mA - p:

e
Moc<wf|<...,nk7,\+1,...|EA-p|...,nk7,\,...>|¢i>

-

oc<...,nk,>\—i—1,...\aL,A|...,nk7,\,...>

g

VA onk oL A+ L) =4 /e +HL

d) In the electric dipole approximation we have the selectide Al = +1,
thus the transitions

4p — 3d
— 3s
— 28

— 1s

are allowed.



