
Solutions to the final exam
TFY4210 – Applied quantum mechanics

May 23, 2007

Problem 1

a) The functionalF [n] is said to beuniversal because it is independent of the
external potentialvext and does not refer to a specific system. This implies
that the sameF [n] is to be used forall electron structure problems, whether
the calculation involves only a single atom or a molecule adsorbed on a
metal surface.

b) Normalising:

N = C

∫

dr e−r/R

= 4πC

∫ ∞

0

dr r2 e−r/R

= 4πCR3

∫ ∞

0

dt t2 e−t

= 4πCR3Γ(3)

= 8πCR3

SoC = N/(8πR3), and

n(r) =
N

8πR3
e−r/R

It is a good idea to check the units:[R] = m, so the electron (number)
density has the correct unit[n] = m−3.

c) We first calculateEext:

Eext(R) = − Ze2

4πε0

∫

dr
n(r)

r

= − NZe2

32π2ε0R3
4π

∫ ∞

0

dr r e−r/R

= − e2

8πε0

NZ

R3
R2

∫ ∞

0

dt t e−t
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= − e2

8πε0

NZ

R
Γ(2)

= − e2

8πε0
︸ ︷︷ ︸

≡C1

NZ

R

(Note that[e2/(εoR)] = C2/(C2J−1m−1m) = J, so[Eext] = J.)
Then the kinetic energyTTF:

TTF(R) = As

∫

drn5/3(r)

= As
N5/3

(8π)5/3R5
4π

∫ ∞

0

dr r2 e−5r/3R

= As
N5/3

(8π)5/3R5
4π

(
3

5
R

)3 ∫ ∞

0

dt t2 e−t

= As
N5/3

(8π)5/3R5
4π

(
3

5
R

)3

Γ(3)

=
27

125

As

(8π)2/3

︸ ︷︷ ︸

≡C2

N5/3

R2

(Units:As ∝ ℏ
2/me so [As] = J2s2/kg = Jm2 and[TTF] = Jm2m−2 = J.)

We finally calculate the Hartree energy:

EH(R) =
e2

8πε0

∫

dr1dr2
n(r1)n(r2)

|r1 − r2|

=
e2

(8π)3ε0

N2

R6

∫

dr1dr2
e−(r1+r2)/R

|r1 − r2|

Introducing the new parameterss1 = Rr1 ands2 = Rr2:

EH(R) =
e2

(8π)3ε0

N2

R

∫

ds1ds2
e−(s1+s2)

|s1 − s2|

Then we use the expansion (given on page 5 of the exam set):

1

|s1 − s2|
=

1

s1

∑

l,m

(
4π

2l + 1

) (
s2

s1

)l

Ylm(θ1, φ1)Ylm(θ2, φ2)
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whens2 > s1, and withs1 ands2 interchanged whens2 < s1. Our trial
electron densityn(r) is independent of angles, so the integration over the
angles is easy. Only the spherical harmonics depend on the angles, so
∫

dΩ1

∫

dΩ2
1

|s1 − s2|
=

1

s1

∑

l,m

(
4π

2l + 1

) (
s2

s1

)l ∫

dΩ1 Ylm(θ1, φ1)

∫

dΩ2 Ylm(θ2, φ2)

Since
∫

dΩ1 Ylm(θ1, φ1) =
√

4π

∫

dΩ1 Y
∗
00(θ1, φ1)Ylm(θ1, φ1)

=
√

4πδl,0δm,0

we get
∫

dΩ1

∫

dΩ2
1

|s1 − s2|
=

{
(4π)2/s1 : s2 > s1

(4π)2/s2 : s2 < s1

The radial integration must be split into two parts, one withs2 < s1 and one
with s2 > s1:

EH(R) =
1

(8π)3ε0

e2N2

R
(4π)2

∫ ∞

0

ds2 s
2
2 e−s2

[∫ s2

0

ds1
s2
1

s2

e−s1 +

∫ ∞

s2

ds1
s2
1

s1

e−s1

]

=
1

32πε0

e2N2

R

∫ ∞

0

ds2 s
2
2 e−s2

[
2

s2

− 1

s2

(2 + 2s2 + s2
2) e−s2 + (1 + s2) e−s2

]

=
1

32πε0

e2N2

R

[

2

∫ ∞

0

ds2 s2 e−s2 − 2

∫ ∞

0

ds2 s2 e−2s2 −
∫ ∞

0

ds2 s
2
2 e−2s2

]

=
1

32πε0

e2N2

R

[

2Γ(2) − 1

2
Γ(2) − 1

8
Γ(3)

]

=
5

32

(
e2

4πε0

)
N2

R

(Units: [EH] = [e2/(εoR)] = C2/(C2J−1m−1m) = J)

d) We can find an approximation for the ground state energy by minimising

E(R) = Eext(R) + TTF(R) + EH(R)

= −C1
NZ

R
+ C2

N5/3

R2
+ Ck

N2

R

= − (C1Z − CkN)
N

R
+ C2

N5/3

R2
(1)
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Here I have introduced

Ck =
5

32

1

4πε0
.

We first find the valueRmin that minimiseE(R):

∂E(R)

∂R

∣
∣
∣
∣
R=Rmin

= 0 = (C1Z − CkN)
N

R2
min

− 2C2
N5/3

R3
min

which gives us:

Rmin =
2C2N

2/3

C1Z − CkN

Substituting this value in equation (1), we get our approximation for the
ground state energy as a function ofN andZ:

E(N,Z) = − (C1Z − CkN)
N

Rmin
+ C2

N5/3

R2
min

= −
[

(C1Z − CkN) − C2N
2/3 1

Rmin

]
N

Rmin

= −
[

(C1Z − CkN) − 1

2
(C1Z − CkN)

]

N1/3 (C1Z − CkN)

2C2

= −1

4
N1/3 (C1Z − CkN)2

C2

The approximation for the ground state electron density is:

n(r,N, Z) =
N

8πR3
min

e−r/Rmin

=
(C1Z − CkN)3

64πNC3
2

e−r(C1Z−CkN)/(2C2N2/3)

e) Neutral atom,N = Z:

EGS(Z,Z) = −1

4
Z1/3 (C1Z − CkZ)2

C2

= − 1

4

(C1 − Ck)
2

C2
︸ ︷︷ ︸

≡C3

Z7/3
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Our value forC3 is

C3 =
1

4

(C1 − Ck)
2

C2

=
1

4

e4

16π2ε2
0

(
1

2
− 5

32

)2
125

27

(8π)2/3

As

=
54112

21534

(
8

3π

)2/3
e4me

π2ε2
0ℏ

2

≈ 1.7818 · 10−18 J

Converted to the Rydberg unit:

C3 = 0.81740 Ry

So, with our choice of trial electron density we are almost 50% in error
compared to the exact value. At least we have found an upper limit to the
ground state energy (as expected for a variational approximation):

Eapprox
GS = −0.81740Z7/3 Ry

g) For a neutral atom our approximation to the electron density is:

n(r, Z) =
Z2γ3

8π
e−γrZ1/3

where

γ = (C1 − Ck)/(2C2) =
1375

1728

e2

4πε0

(8π)2/3

As

≈ 4.4936 · 1010 m−1

which is larger than zero, so our approximate electron density is a exponen-
tially decreasing function ofr. Figure 1 shows plots of the electron density
(more precisely the radial distribution of electrons4πr2n(r)) for Xe. The
plot on the left hand side shows the result of a (much) more precise LDA
(local density approximation) calculation (Note that theyhave used atomic
units, so the values along ther-axis differ in the two plots) and on the right
hand side is a plot of our electron density. As you can see, ourelectron
density lacks the shell structure seen in the LDA-plot.

h) In our approximation we have

– not included the exchange energy-contribution to the total energy.
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Figure 1:

– not included the electron correlation-contribution to the total energy.

– used a rather crude approximation for the kinetic energy (assumed that
it is equal to the kinetic energy of a non-interacting electron gas (ideal
Fermi gas).

Problem 2

a) Our starting point is

iℏ
∂Ψ

∂t
= HΨ

whereH = c
√

p2 for a massless particle. Can the square root be linearised?
√

p2 = α1p1 + α2p2 + α3p3

whereαi (with i = 1, 2, 3) are unknown quantities to be determined. Take
the square of each side of this equation:

p2
1 + p2

2 + p2
3 = α2

1p
2
1 + α2

2p
2
2 + α2

3p
2
3 +

+(α1α2 + α2α1)p1p2 + (α1α3 + α3α1)p1p3 + (α3α2 + α2α3)p2p3

The right and left hand side are equal if the quantitiesαi satisfy theanti-
commutator relations

αiαj + αjαi ≡ {αi, αj} = 2δij

whereδij is the Kroenecker delta. In additionαi must be hermitianα†
i = αi

(so thatH is hermitian). Other properties:
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1. α2
i = 1 so the eigen values ofαi must be±1.

2. Trαi = 0
Proof: (shown only forα1)

Trα1 = Tr(α1α
2
2) = Tr(α2α1α2) = −Tr(α2

2α1) = −Trα1

which implies thatTrα1 = 0. Here I have used the fact thatα1

andα2 anti-commute, and that the trace is cyclic (i.e.,Tr(ABC) =
Tr(BCA) = Tr(CAB), etc, for matricesA, B andC).

3. The dimension ofαi must beeven, i.e.D = 2n wheren = 1, 2, 3, . . .
This follows from the propertyTrαi = 0 and the fact that the eigen
values toαi are±1 (the trace of a matrix is equal to the sum of its
eigen values).

Thus, we get the following equation

iℏ
∂Ψ

∂t
= HΨ = cα · p̂Ψ =

cℏ

i
α · ∇Ψ

whereα = (α1, α2, α3) are2n-dimensional matrices with the above men-
tioned properties. This is of course exactly the same equation as we get if
we putm = 0 in the Dirac equation.

b) We needthree hermitian and mutually anti-commuting matrices. The Pauli
matrices are three such matrices, so in this case we can choose α = σ.
We then get the following two equations (when we do not forgetboth signs
E = ±c√p):

∂Ψ

∂t
= ±cσ · ∇Ψ

We cannot use the Pauli matrices whenm 6= 0, because we then needfour
hermitian, anti-commuting matrices. Assume to the contrary that there is
such a fourth matrix:

σ̃ =

(
a b∗

b −a

)

This matrix is hermitian andTr σ̃ = 0. It must anti-commute withσz:
(

1 0
0 −1

) (
a b∗

b −a

)

= −
(
a b∗

b −a

) (
1 0
0 −1

)

By multiplying the matrices we get
(
a b∗

−b a

)

=

(
−a b∗

−b −a

)

7



thusa = 0:

σ̃ =

(
0 b∗

b 0

)

Our matrix must also anti-commute withσx. It is easy to show that this
demand impliesb∗ = −b, so

σ̃ = constant ×
(

0 −i
i 0

)

= constant × σy

and soσ̃ will not anti-commute withσy. It is therefore not possible to
find four mutually anti-commuting, hermitian2 × 2-matrices, and we can
therefore not use the Pauli matrices whenm 6= 0.

c) Assume a plane-wave solution:

Ψ = u e−
i

ℏ
(Et−p·r)

whereu is a two-component spinor. Then we find from on of the Weyl
equations:

Eu = cσ · pu
Written on matrix form:

(
E + cpz c(px + ipy)
c(px − ipy) E − cpz

) (
u1

u2

)

= 0

This equation has non-trivial solutions only if the determinant of the sys-
tem’s matrix is zero:

(E + cpz)(E − cpz) − c2(px + ipy)(px − ipy) = 0

which yields:
E2 − c2p2 = 0

or equivalentlyE = ±pc.
Problem 3

a) – ek,λ are two (λ = 1, 2) unit polarisation vectors normal to each other.

– a†k,λ andak,λ are creation and annihilation operators.a†k,λ creates a
photon in the mode(k, λ), while ak,λ destroys a photon in the mode
(k, λ).

Coulomb gauge

0 = ∇ · A = i
∑

k,λ

(k · ek,λ)

√

ℏ

2V ε0ωk

(

ak,λ eik·r − a†k,λ e−ik·r
)
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which implies
k · ek,λ = 0

so the polarisation vectorsek,1 andek,2 are normal to the wave vectork.

b) Now
∇ · (A(r)f(r)) = (∇ · A(r))f(r) + A(r) · ∇f(r)

so choosing Coulomb gauge (∇ · A = 0) we get

∇ · (A(r)f(r)) = A(r) · ∇f(r)

thusp andA commute when we use the Coulomb gauge, so

V =
e

2m
(A · p + p · A) +

e2

2m
A2

=
e

2m
(2A · p) +

e2

2m
A2

=
e

m
A · p +

e2

2m
A2

c) In the case of spontaneous emission there is one extra photon in the final
state compared to the initial state. Tolowest order we therefore must include
the term which is linear in the creation operatora†k,λ, i.e. e/mA · p:

M ∝ 〈ψf |〈 . . . , nk,λ + 1, . . . | e
m

A · p| . . . , nk,λ, . . . 〉|ψi〉

∝ 〈 . . . , nk,λ + 1, . . . |a†k,λ| . . . , nk,λ, . . . 〉
︸ ︷︷ ︸√

nk,λ+1〈...,nk,λ+1,...|...,nk,λ+1,...〉=
√

nk,λ+1

d) In the electric dipole approximation we have the selection rule ∆l = ±1,
thus the transitions

4p→ 3d

→ 3s

→ 2s

→ 1s

are allowed.
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