
Solution sketch, Exam TFY4210 Quantum theory of many-particle systems

Lecturer: John Ove Fjærestad

Exam date: 4 June 2012. Exam duration: 4 hours. All 11 subproblems had the same weight.

Problem 1

(a) Dirac wanted a relativistic equation for the electron. The Klein-Gordon equation had originally been suggested
for this, but it led to interpretational problems (”negative probabilities”) due to being second order in the time
derivative. (Besides, it turned out to be unable to describe particles with spin.) Dirac therefore considered an equation
that was first order in the time derivative (like the Schrödinger equation), and thus had to be first order in space
derivatives too, in order for space and time coordinates to appear in a similar way, as required by relativistic consid-
erations. This led to a Hamiltonian that was a linearization of the kinetic energy operator for a free relativistic particle.

(b) We start from the linearization √
~p2 +m2 = ~α · ~p+ βm = α1px + βm (1)

where ~p is the momentum operator and px its only component (one spatial dimension). Squaring both sides gives

p2x +m2 = (α1px + βm)2 = α2
1p

2
x + (α1β + βα1)pxm+ β2m2. (2)

Comparing the leftmost and rightmost expressions then gives

α2
1 = β2 = 1, (3)

α1β + βα1 = 0. (4)

(c) Using the explicit form of the Pauli matrices (given in the Formula section) and of the momentum operator gives

H = σ3px + σ1m =

(
−i∂x m
m i∂x

)
. (5)

We assume that the eigenstates of H take a plane-wave form,

ψ =

(
ψ1

ψ2

)
eipx (6)

where ψ1 and ψ2 are constants (i.e. independent of x). The eigenvalue equation Hψ = Eψ then gives, upon carrying
out the differentations and rearranging, (

p− E m
m −p− E

)(
ψ1

ψ2

)
= 0. (7)

This equation has solutions if the determinant of the matrix vanishes, i.e. if

0 = −(p− E)(p+ E)−m2 = −p2 + E2 −m2, (8)

which gives E = ±
√
p2 +m2.

(d) The simplest derivation proceeds by treating ψ and ψ̄ as independent fields, and considering the Euler-Lagrange
equation for ψ̄, which reads

∂L
∂ψ̄
− ∂µ

∂L
∂(∂µψ̄)

= 0. (9)

One finds

∂L
∂ψ̄

= (iγµ∂µ −m)ψ and
∂L

∂(∂µψ̄)
= 0. (10)

Inserting this into the Euler-Lagrange equation above gives the Dirac equation.
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(e) Using the given formulas for the Pauli matrices one finds

γ5 = γ0γ1 = σ1(−i)σ2 = σ3 =

(
1 0
0 −1

)
. (11)

Taking the adjoint of the transformation of ψ gives

ψ† → (eiθγ
5

ψ)† = ψ†e−iθγ
5

, (12)

where we used that γ5 is hermitian, which follows from (11). Thus ψ̄ transforms as

ψ̄ = ψ†γ0 → ψ†e−iθγ
5

γ0 = ψ†
∑
n

(−iθ)n

n!
(γ5)nγ0 = ψ†γ0

∑
n

(−iθ)n

n!
(−1)n(γ5)n = ψ†γ0eiθγ

5

= ψ̄ eiθγ
5

.

Here we used that interchanging γ0 and γ5 produces a minus sign, which follows from

{γ5, γ0} = γ5γ0 + γ0γ5 = σ3σ1 + σ1σ3 = 0, (13)

where the last result was given in the formula section. This gives

ψ̄ψ → ψ̄e2iθγ
5

ψ, (14)

iψ̄γ5ψ → iψ̄e2iθγ
5

γ5ψ. (15)

The exponential can be written

e2iθγ
5

=

∞∑
n=0

(2iθγ5)n

n!
=

∞∑
n=0

(2iθγ5)2n

(2n)!
+

∞∑
n=0

(2iθγ5)2n+1

(2n+ 1)!
. (16)

Now we use that (γ5)2 = I, which is a consequence of (11). This gives (γ5)2n = I and (γ5)2n+1 = γ5. Thus

e2iθγ
5

= I

∞∑
n=0

(−1)n(2θ)2n

(2n)!
+ iγ5

∞∑
n=0

(−1)n(2θ)2n+1

(2n+ 1)!
= I cos 2θ + iγ5 sin 2θ. (17)

This gives (
ψ̄ψ

iψ̄γ5ψ

)
→
(

cos 2θ sin 2θ
− sin 2θ cos 2θ

)(
ψ̄ψ

iψ̄γ5ψ

)
.

The 2-component vector is therefore invariant if 2θ = 2πn, where n is an integer, i.e. if θ = nπ.

Problem 2

(a) Diagram (i):

1

S
(−iλ)

∫
d4z DF (x− z)DF (z − y)DF (z − z)︸ ︷︷ ︸

=DF (0)

. (18)

Diagram (ii):

1

S
(−iλ)3

∫
d4z1

∫
d4z2

∫
d4z3DF (x− z1)DF (y − z1)DF (z1 − z2)DF (z1 − z3)(DF (z2 − z3))3. (19)

(b) Diagrams (i), (ii), and (iii) are invalid. Justification:

• In diagram (i) internal points (vertices) are connected to 3 propagator lines, but in ϕ4 theory there should be 4.

• Diagram (ii) has no external points x and y, only internal points (vertices).

• Diagram (iii) is not a connected diagram.
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(c) Using momentum conservation at each vertex shows that the momenta of the horizontal lines are all equal (and

thus given by p, since the sum is an approximation for D̃F (p)int). Labeling the momentum variable in the j’th loop
as pj , the diagram with n loops is given by the expression

2−n(−iλ)n(D̃F (p))n+1
n∏
j=1

∫
d4pj
(2π)4

D̃F (pj) = 2−n(−iλ)n(D̃F (p))n+1(DF (0))n, (20)

where in the last expression we used that the n loop integrals are identical and equal to DF (0). Thus approximating

D̃F (p)int as the sum of the series from n = 0 to ∞ gives

D̃F (p)int ≈ D̃F (p)

∞∑
n=0

(
−iλD̃F (p)DF (0)

2

)n
. (21)

We recognize this as a geometric series. Evaluating it gives

D̃F (p)int ≈
D̃F (p)

1− −iλD̃F (p)DF (0)
2

=
1

(D̃F (p))−1 + iλDF (0)/2
. (22)

Using the expression for D̃F (p) given in the formula section, this simplifies to

D̃F (p)int ≈
i

p2 − (m2 + λ
2DF (0)) + iε

. (23)

Problem 3

(a) Both terms in H have the same structure, each involving an expression of the form∑
j

c†jσcj+r,σ + h.c., (24)

where r = 1 in the first term and r = 2 in the second term. We introduce Fourier transformed operators as

cjσ =
1√
N

∑
k

eikjckσ. (25)

Periodic boundary conditions means cjσ = cj+N,σ which implies eikN = 1, i.e. k = 2πn/N , where n is integer.
Choosing the N values of n closest to zero (n = −N/2,−N/2 + 1, . . . , N/2− 1) then gives that the N inequivalent k
vectors are in the 1st Brillouin zone, uniformly spaced by 2π/N . Consider now∑

j

c†jσcj+r,σ =
1

N

∑
j

∑
k,k′

e−ikjeik
′(j+r)c†kσck′σ =

∑
k,k′

c†kσck′σe
irk′ 1

N

∑
j

e−i(k−k
′)j

︸ ︷︷ ︸
δkk′

=
∑
k

eirkc†kσckσ. (26)

Thus

H =
∑
kσ

−t (eik + e−ik)︸ ︷︷ ︸
2 cos k

+t′ (e2ik + e−2ik)︸ ︷︷ ︸
2 cos 2k

 c†kσckσ =
∑
kσ

εkc
†
kσckσ. (27)

(b) A sketch of εk for t′ = 0 is shown below. Each k-vector can accommodate 2 electrons (with opposite spin
projections). Since the system is half-filled, the N/2 wavevectors with smallest energy εk will be occupied with 2
electrons each and the remaining N/2 wavevectors will be unoccupied. As εk has a minimum at k = 0 and grows
monotonically away from it (inside the 1st Brillouin zone), the occupied half of the wavevectors is the k-space region
between −π/2 and π/2 (since the k-vectors are uniformly spaced). Therefore the Fermi wavevectors are at k = ±π/2.
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(c) When r is increased from 0, εk will for sufficiently large r develop a local maximum at k = 0 [1] that then grows
with r. As long as the energy ε0 of this local maximum is smaller than ε±π/2, the occupied wavevectors will continue
to lie in the interval (−π/2, π/2) so that there continues to be 2 Fermi wavevectors, located at k = ±π/2, just as for
r = 0. However, at some critical value r = rc we get ε0 = ε±π/2. For r > rc a region of k-space around k = 0 will
then become unoccupied, so that the occupied region of the 1st Brillouin zone splits into two symmetric parts, one
on each side of k = 0. Thus for r > rc there will be 4 Fermi wavevectors. The critical value of r can be found from
the condition

ε0 = ε±π/2 (28)

i.e.

−2t(cos 0− r cos(2 · 0)) = −2t(cosπ/2− r cos(2 · π/2))⇒ 1− r = −r(−1) (29)

which gives r = 1/2 = rc. The Fermi energy at r = rc is

εF = −2t(cos 0− 1

2
cos(2 · 0)) = −t. (30)

[1] This local maximum arises when the second derivative of εk at k = 0 changes sign from positive to negative, which happens
at r = 1/4:

d2εk
dk2
|k=0 = 0⇒ [− cos k + 4r cos 2k]k=0 = 0⇒ −1 + 4r = 0⇒ r = 1/4.


