
Exam solution, spring 2013
TFY4210 Quantum theory of many-particle systems

Problem 1

(a) Let us e.g. express the anticommutator {a1, a
†
1} = 1 in terms of the c-operators:

1 = {a1, a
†
1} = {uc1−vc†2, uc

†
1−vc2} = u2{c1, c†1}−uv{c1, c2}−uv{c

†
1, c
†
2}+(−v)2{c2, c†2} (1)

where we also used {A,B} = {B,A} for any A, B. Now using the standard fermionic anti-
commutation relations {c1, c†1} = {c2, c†2} = 1 and {c1, c2} = {c†1, c

†
2} = 0 gives 1 = u2 + v2.

(b) Expressing the a-operators in terms of the c-operators gives

a†1a1 = (uc†1 − vc2)(uc1 − vc
†
2) = u2c†1c1 − uv(c†1c

†
2 + h.c.)− v2c†2c2 + v2, (2)

a†2a2 = (vc1 + uc†2)(vc
†
1 + uc2) = −v2c†1c1 − uv(c†1c

†
2 + h.c.) + u2c†2c2 + v2, (3)

a†1a
†
2 = (uc†1 − vc2)(vc1 + uc†2) = uvc†1c1 + u2c†1c

†
2 − v2c2c1 + uvc†2c2 − uv, (4)

where we also used cic
†
i = 1− c†ici. Thus

H = [ε(u2 − v2) + ∆ · 2uv](c†1c1 + c†2c2)

+ [∆(u2 − v2)− ε · 2uv](c†1c
†
2 + h.c.)

+ [ε · 2v2 −∆ · 2uv]. (5)

Now we pick u and v such that the coefficient of (c†1c
†
2 + h.c.) vanishes. Expressing u and v

in terms of θ and using the given formulas for the cosine and sine of a double angle, we find:

ε · 2uv −∆(u2 − v2) = 0

⇒ ε sin 2θ = ∆ cos 2θ

⇒ tan 2θ =
∆

ε
. (6)

(c) H now takes the form
H = F (c†1c1 + c†2c2) +G (7)

with

F = ε(u2 − v2) + ∆ · 2uv, (8)

G = ε · 2v2 −∆ · 2uv. (9)

Using the double-angle formulas and (6) gives

F = ε cos 2θ + ∆ sin 2θ = cos 2θ(ε+ ∆ tan 2θ) = cos 2θ

(
ε+ ∆ · ∆

ε

)
=

cos 2θ

ε
(ε2 + ∆2). (10)
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Next we use the given formula relating cos2 x and tan2 x to find

cos2 2θ =
1

1 + tan2 2θ
=

1

1 + (∆/ε)2
⇒ cos 2θ =

1√
1 + (∆/ε)2

(11)

where we picked the positive solution. Inserting this in (10) gives

F =
√
ε2 + ∆2. (12)

Next, to find G we use that

2v2 = v2 + v2 = v2 + (1− u2) = 1− (u2 − v2) = 1− cos 2θ. (13)

This gives

G = ε(1− cos 2θ)−∆ sin 2θ = ε− (ε cos 2θ + ∆ sin 2θ)

= ε− F = ε−
√
ε2 + ∆2. (14)

(d) We have
H = F (n̂1 + n̂2) +G (15)

where n̂1 ≡ c†1c1 and n̂2 ≡ c†2c2 are number operators. As they commute with each other,
the eigenstates of H can be labeled by (n1, n2) where n1 and n2 are the eigenvalues of n̂1

and n̂2, respectively. As the particles are fermions these eigenvalues are limited to 0 and
1. Therefore H has 4 eigenstates, labeled as (n1, n2) = (0, 0), (1,0), (0,1), or (1,1).1 The
corresponding eigenvalue is the energy

E(n1, n2) = F (n1 + n2) +G, (16)

giving

E(0, 0) = G, (17)

E(1, 0) = F +G, (18)

E(0, 1) = F +G, (19)

E(1, 1) = 2F +G. (20)

Thus there are 3 energy levels, with energies G, F + G, and 2F + G. The first and last of
these are nondegenerate (i.e. degeneracy 1), while the middle one is doubly degenerate (i.e.
degeneracy 2).

Problem 2

(a) We have

H = −
∑
〈i,j〉

[J⊥(Sxi S
x
j + Syi S

y
j ) + JzS

z
i S

z
j ] = −

∑
〈i,j〉

[
J⊥
2

(S+
i S
−
j + S−i S

+
j ) + JzS

z
i S

z
j

]
. (21)

1Using Fock space notation we would write these states as |n1, n2〉, i.e. |0, 0〉, |1, 0〉, |0, 1〉, and |1, 1〉.
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As only nearest-neighbour spins interact we can set rj = ri + δ where δ runs over the two
unit vectors +x̂ and +ŷ on the square lattice (−x̂ and −ŷ are excluded to avoid double
counting). For short we write this relation as j = i+ δ when it appears as a subscript. This
gives

H = −
∑
i,δ

[
J⊥
2

(S+
i S
−
i+δ + S−i S

+
i+δ) + JzS

z
i S

z
i+δ

]
. (22)

As Jz > J⊥ in general, we expect that in the ordered state of the system, the spins will
order ferromagnetically in the +ẑ or −ẑ direction. Among these two possibilities let us
assume the standard one of ordering in the +ẑ direction, as then we can use the given
Holstein-Primakoff (HP) expressions without any modifications. In the expansion of the
square roots it is sufficient to only keep the leading term, because the first subleading term
in the Hamiltonian (of order

√
S
√
SS−1 = S0) involves 4 boson operators and thus represents

magnon-magnon interactions which should be neglected. Thus effectively the HP expressions
for S+ and S− are simplified to

S+
i ≈
√

2Sai, S−i ≈
√

2Sa†i . (23)

This gives

H = −
∑
i,δ

[
J⊥
2

(
√

2S)2(aia
†
i+δ + a†iai+δ) + Jz(S − ni)(S − ni+δ)

]
= −

∑
i,δ

[J⊥S(a†i+δai + h.c.) + Jz(S
2 − 2Sni)]. (24)

Here we neglected the O(S0) terms with factors nini+δ in the second line as these also repre-
sent interactions between magnons. We also used the simplification

∑
i ni+δ =

∑
i ni which

follows from the periodic boundary conditions. The constant term in H is −JzS2
∑

i,δ =

−2NJzS
2 since δ runs over two vectors (here N is the number of lattice sites). Thus

H = −2JzNS
2 − S

∑
i,δ

[J⊥(a†i+δai + h.c.)− 2Jza
†
iai]. (25)

Now we do a Fourier transformation, writing

ai =
1√
N

∑
k

eik·riak (26)

where the k-sum goes over the 1st Brillouin zone. This gives (with ri+δ = ri + δ)∑
i

a†i+δai =
∑
i

1

N

∑
k,k′

e−ik·(ri+δ)eik
′·ria†kak′ =

∑
k,k′

a†kak′e
−ik·δ 1

N

∑
i

e−i(k−k
′)·ri

︸ ︷︷ ︸
δk,k′

=
∑
k

a†kake
−ik·δ, (27)

∑
i

a†iai =
∑
i

1

N

∑
k,k′

e−ik·rieik
′·ria†kak′ =

∑
k,k′

a†kak′
1

N

∑
i

e−i(k−k
′)·ri)

︸ ︷︷ ︸
δk,k′

=
∑
k

a†kak.(28)
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(An alternative and quicker way to get (28) would be to replace δ by 0 in (27).) Also using
that a†kake

−ik·δ + h.c. = a†kak(e−ik·δ + eik·δ) = a†kak · 2 cos(k · δ), we find that

H = E0 +
∑
k

ωka
†
kak (29)

with

E0 = −2JzNS
2, (30)

ωk = 2S
∑
δ

[Jz − J⊥ cos(k · δ)] (= 2S[2Jz − J⊥(cos kx + cos ky)]) (31)

(b) For small |k| = k we can approximate cos(k · δ) ≈ 1− 1
2
(k · δ)2. Using also

∑
δ(k · δ)2 =

(k · x̂)2 + (k · ŷ)2 = k2
x + k2

y = k2, we get

ωk ≈ 4S(Jz − J⊥) + SJ⊥k
2. (32)

Comparing this with the form given in the problem text we can identify

∆ = 4S(Jz − J⊥), (33)

m =
1

2SJ⊥
. (34)

(c) We see from (33) that ∆ → 0 in the limit J⊥ → Jz. Note also that ∆ is the mini-
mum value of ωk considered as a function of k. This means that in the limit J⊥ → Jz the
system becomes gapless. On the other hand, Goldstone’s theorem says that if the ground
state breaks a continuous symmetry of the Hamiltonian, the system has gapless excitations.
When J⊥ = Jz the Hamiltonian reduces to the Heisenberg model H = J

∑
〈i,j〉 Si ·Sj, which

has a continuous symmetry corresponding to global spin rotations by any angle around an
arbitrary axis, and this symmetry is broken by the ferromagnetic ground state. Hence, by
Goldstone’s theorem, gapless excitations are expected in this limit, and thus the value ∆ = 0
in this limit is expected.

Problem 3

In the diagrams we have (as in the problem text) for simplicity not drawn the downward-
pointing arrows on the dashed interaction lines.

(a) 1. The order n is the number of (dashed) interaction lines, equivalently one less than
the number of (full) electron lines.
2. The diagram is proportional to nmimp where m is the number of impurity crosses.

(b) The two diagrams are redrawn below with wavevectors assigned. The expression for the
left diagram can be written

N2U(0)(G(0)(k))3
∑
k1

U(k − k1)U(k1 − k)G(0)(k1). (35)
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This diagram is reducible, as it falls apart by cutting the right internal electron line as shown
in the figure (the thick grey line indicates the cut).

The expression for the right diagram can be written

N2(G(0)(k))2
∑
k1,k2

U(k− k2)U(k2 − k)U(k− k1)U(k1 − k)G(0)(k1)G(0)(k2)G(0)(k1 + k2 − k).

(36)
This diagram is irreducible, as cutting any one of the three internal electron lines will not
make it fall apart. The corresponding self-energy diagram is obtained by removing the two
external electron lines and is shown below. Its mathematical expression is obtained from
(36) by removing the factor (G(0)(k))2 associated with the two external electron lines.

Finally, we note that alternative assignments of the internal wavevectors being summed over
are possible. For example, the expression for the first diagram could be written

N2U(0)(G(0)(k))3
∑
k1

U(−k1)U(k1)G(0)(k + k1). (37)

(c) 1. In Σ1B each diagram has one impurity cross, so Σ1B ∝ nimp. We therefore expect it
to be good for low impurity densities. Furthermore, the diagrams in Σ1B are of low order
(respectively of 1st and 2nd order) in the scattering potential U . We therefore expect Σ1B

to be good for weak scattering.

In ΣFB each diagram has one impurity cross, so ΣFB ∝ nimp. We therefore expect it to
be good for low impurity densities (note that the reasoning here is the same as for Σ1B).
Furthermore, ΣFB contains diagrams of arbitrarily high order in the scattering potential. It
can therefore be expected to be good also for stronger scattering, i.e. it is not limited to
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weak scattering as Σ1B is.

2. The n’th diagram has n factors of the scattering potential and n − 1 Green functions,
with n − 1 internal wavectors that are summed over. The expression for this diagram can
be written

N
∑

k1,...,kn−1

U(k1 − k)U(k2 − k1) · · ·U(k − kn−1)G(0)(k1)G(0)(k2) · · · G(0)(kn−1). (38)

Alternatively, a more explicit way of writing it is

N
∑

k1,...,kn−1

U(k1 − k)G(0)(k1)

[
n−1∏
i=2

U(ki − ki−1)G(0)(ki)

]
U(k − kn−1). (39)

As a concrete example, the n = 4 diagram is shown below.

3. Again consider the n’th diagram. If the k-dependence of the scattering potential can
be neglected, the dependence on the scattering potential simplifies to a constant Un. The
wavevector summations then simplify to n−1 identical summations over a single wavevector.
To get ΣFB we sum over all diagrams, i.e. over n from n = 1 to ∞:

ΣFB = N

∞∑
n=1

Un

(∑
k1

G(0)(k1)

)n−1

= NU
∞∑
n=0

(
U
∑
k1

G(0)(k1)

)n

. (40)

This is a geometric series. It can be evaluated either by using the (given) result for the sum of
such a series, or by noting that it can be written in terms of itself as NU+ΣFBU

∑
k1
G(0)(k1)

and solving for ΣFB. This gives (we do not address questions about convergence here)

ΣFB =
NU

1− U
∑
k1
G(0)(k1)

. (41)

4. Using the Feynman rules, the second diagram in ΣFB is given by

NU2
∑
k1

G(0)(k1) = nimpu · U
∑
k1

G(0)(k1). (42)
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Thus, using the information given in the text about the expression for this diagram, we get
(reinstating the Matsubara frequency dependence of G(0), which we have suppressed in the
notation so far)

U
∑
k1

G(0)(k1, ipm) =
1

nimpu

(
− i

2τ1B

sgn(pm)

)
= −iπuD(0)sgn(pm). (43)

Inserting this into the expression for ΣFB gives

ΣFB(ipm) =
nimpu

1 + iπuD(0)sgn(pm)
= nimpu

1− iπuD(0)sgn(pm)

1 + (πuD(0))2
. (44)

The imaginary part is

Im ΣFB(ipm) = − πnimpu
2D(0)

1 + (πuD(0))2
sgn(pm) ≡ − 1

2τFB

sgn(pm). (45)

Therefore

τFB =
1 + (πuD(0))2

2πnimpu2D(0)
. (46)

This result can alternatively be written in the form τFB = τ1B

(
1 + 1

(2τ1BNU)2

)
, which also

could have been found without invoking the explicit result 1/τ1B = 2πnimpu
2D(0).
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