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Problem (1)

(i) Compute the matrix element:

x0 | âαâβâ
:
αâ
:

β | 0y (1)

for Fermions and for Bosons.
Distinguish the case α ‰ β and α “ β.

Solution:

The definition of Fermion creation and annihilation operators is as follows:

â:α | n1, n2, ..., nα, ...y “ δnα,0p˘1qSα
?
nα ` 1 | n1, n2, ..., nα ` 1, ...y (2)

âα | n1, n2, ..., nα, ...y “ δnα,1p˘1qSα
?
nα | n1, n2, ..., nα ´ 1, ...y (3)

where:
Sα “

ÿ

γăα

nγ (4)

There is no sign factor and no delta-function factor in the case of Bosons:

â:α | n1, n2, ..., nα, ...y “
?
nα ` 1 | n1, n2, ..., nα ` 1, ...y (5)

âα | n1, n2, ..., nα, ...y “
?
nα | n1, n2, ..., nα ´ 1, ...y (6)

Hence:
(i) α ‰ β, Fermions:

â:β | 0y “| βy

â:α | βy “| αβy

âβ | αβy “ ´ | αy

âα | αy “| 0y Ñ x0 | âαâβâ
:
αâ
:

β | 0y “ ´1

A different way would be to interchange (once) the operators using the anti-commutation
rule, to obtain:

x0 | âαâβâ
:
αâ
:

β | 0y “ ´x0 | p1´ n̂αqp1´ n̂βq | 0y (7)

giving again x0 | âαâβâ:αâ
:

β | 0y “ ´1.
The case α “ β is trivial for Fermions, since the double application of â:α to | 0y

annihilates the state.



The Boson case gives (nearly) the same result for the α ‰ β case, only the sign
being different (result “ `1), because of the commutation relations replacig anti-
commutation.

There is a slight difference for the α “ β case:

â:α | 0y “| αy

â:α | αy “
?

2 | ααy
?

2âα | ααy “ 2 | αy

2âα | αy “ 2 | 0y Ñ x0 | âαâαâ
:
αâ
:
α | 0y “ 2

(ii) Consider a many-electron system.
The number of particles is given by the operator:

N̂ “
ÿ

α

â:αâα (8)

where â:α, âα are creation and annihilation operators for the state α.

Show that:
rN̂ , âαs “ ´âα (9)

rN̂ , â:αs “ â:α (10)

Solutions:
We need to compute:

rN̂ , âαs “

«

ÿ

β

â:βâβ, âα

ff

“
“

â:αâα, âα
‰

“ (11)

“ â:αâαâα ´ âαâ
:
αâα

The first term vanishes because â2α “ 0. We consider the second term:

´âαâ
:
αâα “ ´âp1´ âαâ

:
αq “ ´â

where the anti-commutation relation of Fermions has been used, and the last term
has been neglected for the same â2α “ 0 reason.

The rN̂ , â:αs “ â:α is completely analogous to the previous one.



(iii) Let us consider the Boson operators a:λ and aλ, and let fpa:λq or fpaλq be
polynomial functions of their argument.
For instance:

fpaλq “ c0 ` c1aλ ` c2a
2
λ...` cna

n
λ (12)

Show that:

raλ, fpa
:

λqs “
Bfpa:λq

Ba:λ
(13)

and:

ra:λ, fpaλqs “ ´
Bfpaλq

Baλ
(14)

Solution:

The starting point is the relation:

rA,Bn
s “ nBn´1

rA,Bs (15)

which is valid provided B commutes with the rA,Bs commutator. The relation is
easy to very, using for instance the induction principle. If A, B are creation and
annihilation operators, then their commutator is a number (zero or a delta), and this
commutes with any remaining product of operators. The relation above, therefore,is
valid.

Let us consider the commutator between a:λ and fpaλq:

ra:λ, fpaλqs “ c1ra
:

λ, aλs ` c2ra
:

λ, a
2
λs...` cnra

:

λ, a
n
λs (16)

where I neglected the commutator of a:λ with the complex number c0. The result is:

ra:λ, fpaλqs “ c1ra
:

λ, aλs ` 2c2aλra
:

λ, aλs...` ncna
n´1
λ ra:λ, aλs (17)

Since ra:λ, aµs “ ´δλ,µ, we obtain:

ra:λ, fpaλqs “ ´tc1 ` 2c2aλ ` ...` ncna
n´1
λ u “ ´

Bfpaλq

Baλ
(18)

The derivation for raλ, fpa:λqs iscompletely analogous.



Problem (2)

The time ordered correlation function of two operators Â and B̂ is defined as:

χTABptq ” ´ixΨ0 | T rÂptqB̂p0qs | Ψ0y (19)

where | Ψ0y is the ground state, the time dependence in the Heisenberg representation
is:

Âptq “ eiĤtÂe´iĤt (20)

and the time ordering operator is by:

T rÂpt1qB̂pt2qs “

$

’

’

&

’

’

%

Âpt1qB̂pt2q t1 ą t2

B̂pt2qÂpt1q t2 ą t1
(21)

(Notice: there is no (-1) factor associated to the interchange of Fermion operators).

(i) Compute the Fourier transform:

χTABpωq “ lim
ηÑ0`

ż `8

´8

χTABptqe
iωt´η|t|dt (22)

and show that it is given by:

χTABpωq “ ´i
ÿ

n

ˆ

A0nBn0

ω ´ ωn0 ` iη
´

B0nAn0
ω ` ωn0 ´ iη

˙

(23)

where A0n “ xΨ0 | Â | Ψny, tΨ0,Ψ1, ...u are eigenstates of the Hamiltonian, and
h̄ωn0 “ En ´ E0 ą 0.

Solution:

There is a slight subtlety in the way to translate the time ordering of t1 and t2 into
the single time argument of χTABptq.
According to the definition:

T rÂpt1qB̂pt2qs “

$

’

’

&

’

’

%

Âpt1qB̂pt2q t1 ą t2

B̂pt2qÂpt1q t2 ą t1
(24)



Let us change variables, from t1 and t2 to t “ t1 ´ t2 and t2. Then:

T rÂpt` t2qB̂pt2qs “

$

’

’

&

’

’

%

Âpt` t2qB̂pt2q t ą 0

B̂pt2qÂpt` t2q t ă 0
(25)

In these relations t2 plays the role of an irrelevant origin, ad we re-write:

χTABptq “

$

’

’

&

’

’

%

ÂptqB̂ t ą 0

B̂Âptq t ă 0
(26)

Let us now compute:
ż `8

´8

χTABptqe
iωt´η|t|dt “

ż 0

´8

xΨ0 | B̂Âptq | Ψ0ye
iωt`ηtdt`

ż 8

0

xΨ0 | ÂptqB̂ | Ψ0ye
iωt´ηtdt

(27)
Inserting the explicit time-dependence:

“

ż 0

´8

xΨ0 | B̂e
iĤtÂe´iĤt | Ψ0ye

iωt`ηtdt`

ż 8

0

xΨ0 | e
iĤtÂe´iĤtB̂ | Ψ0ye

iωt´ηtdt (28)

“

ż 0

´8

e´iE0txΨ0 | B̂e
iĤtÂ | Ψ0ye

iωt`ηtdt`

ż 8

0

eiE0txΨ0 | Âe
´iĤtB̂ | Ψ0ye

iωt´ηtdt

Inserting a complete basis of eigenfunctions of the Hamiltonian:

“
ÿ

n

ż 0

´8

eipEn´E0qtxΨ0 | B̂ | ΨnyxΨn | Â | Ψ0ye
iωt`ηtdt (29)

`
ÿ

n

ż 8

0

e´ipEn´E0qtxΨ0 | Â | ΨnyxΨn | B̂ | Ψ0ye
iωt´ηtdt

“
ÿ

n

B0nAn0

ż 0

´8

eiωn0teiωt`ηtdt (30)

`
ÿ

n

A0nBn0

ż 8

0

e´iωn0teiωt´ηtdt

“
ÿ

n

B0nAn0
eiωn0teiωt`ηt

iωn0 ` iω ` η

ˇ

ˇ

ˇ

ˇ

0

´8

(31)

`
ÿ

n

A0nBn0
e´iωn0teiωt´ηt

´iωn0 ` iω ´ η

ˇ

ˇ

ˇ

ˇ

8

0

“ ´i
ÿ

n

B0nAn0
ωn0 ` ω ´ iη

(32)



`i
ÿ

n

A0nBn0

ω ´ ωn0 ` iη

Now multiplying times ´i, we obtain:

χTABpωq “
ÿ

n

ˆ

A0nBn0

ω ´ ωn0 ` iη
´

B0nAn0
ω ` ωn0 ´ iη

˙

(33)

where it is understood that η is an infinitesimal positive quantity.

The causal version of the same correlation function is given by:

χABptq ” ´iθptqxΨ0 | rÂptq, B̂p0qs | Ψ0y (34)

where r.., ..s is the commutator.
(ii) Compute the Fourier transform of χABptq and compare it to that of χTAB.

Solution:

The Fourier transform of χABptq is:

χABpωq “ lim
ηÑ0`

ż `8

´8

χABptqe
iωt´η|t|dt (35)

Let us compute:
ż 8

´8

χABptqe
iωt´η|t|dt “

ż 8

0

xΨ0 | ÂptqB̂ ´ B̂Âptq | Ψ0ye
iωt´ηtdt (36)

“

ż 8

0

xΨ0 | e
iĤtÂe´iĤtB̂ ´ B̂eiĤtÂe´iĤt | Ψ0ye

iωt´ηtdt

Inserting a complete set of eigenfunctions of the Hamiltonian:

“
ÿ

n

A0nBn0

ż 8

0

e´ipEn´E0qteiωt´ηtdt´
ÿ

n

An0B0n

ż 8

0

eipEn´E0qteiωt´ηtdt (37)

“
ÿ

n

A0nBn0
e´iωn0teiωt´ηt

´iωn0 ` iω ´ η

ˇ

ˇ

ˇ

ˇ

8

0

´
ÿ

n

An0B0n
eiωn0teiωt´ηt

iωn0 ` iω ´ η

ˇ

ˇ

ˇ

ˇ

8

0

“ i
ÿ

n

A0nBn0

ω ´ ωn0 ` iη
´ i

ÿ

n

An0B0n

ω ` ωn0 ` iη

Multiplying not times ´i we obtain:
(Note: I need to check whether this ´i is correct or not!)

χABpωq “
ÿ

n

A0nBn0

ω ´ ωn0 ` iη
´
ÿ

n

An0B0n

ω ` ωn0 ` iη



where again η is an infinitesimal positive quantity.

This is the same expression of χTABpωq apart from changing the sign of iη in the
second sum.

(iii) Comment on the position of the poles in the complex ω plane for χTABpωq and
χABpωq.

Solution:

The poles of χTABpωq in the complex ω plane are at ω “ ωn0´iη and at ω “ ´ωn0`iη.
Therefore, χTABpωq has poles both in the upper and in the lower imaginary half-plane.

By contrast, χABpωq has poles only in the negative imaginary half-plane.



Problem (3)

(i) The exchange-correlation energy functional of a many-electron system in 1D
is given by:

EXCrρs “

ż

αrρpxqs4{3dx`
1

2

ż

Kpρq

„

dρpxq

dx

2

dx (38)

where α is a positive numerical coefficient.
Compute the exchange-correlation potential:

µXCpxq “
δEXC
δρpxq

(39)

Solution:

To determine the functional derivative we need to make the change:

ρpxq Ñ ρpxq ` δρpxq (40)

d

dx
ρpxq Ñ

d

dx
ρpxq `

d

dx
δρpxq (41)

into Eq. ??, keeping the linear terms in the integrand.

EXCrρ` δρs “

ż

αrρpxq ` δρpxqs4{3dx (42)

`
1

2

ż

Kpρ` δρq

ˆ

dρpxq

dx
`
dδρpxq

dx

˙2

dx

“

ż

αrρ4{3pxq `
4

3
ρ1{3pxqδρpxq ` ...sdx

`
1

2

ż

rKpρq `
BKpρq

Bρ
δρpxqsr

ˆ

dρpxq

dx

˙2

` 2
dρpxq

dx

dδρpxq

dx
sdx

Linear terms (in δρpxq) in the integrand are:

4

3
αρ1{3pxq `

1

2

BKpρq

Bρ

ˆ

dρpxq

dx

˙2

(43)

These are terms appearing in the XC potential.
We have also:

1

2

ż

Kpρqr2
dρpxq

dx

dδρpxq

dx
sdx (44)



that needs to be transformed into a term linear in δρ while now it is linear in dδρ{dx.
We achieve our aim integrating by parts:

1

2

ż

Kpρqr2
dρpxq

dx

dδρpxq

dx
sdx “ (45)

Kpρq
dρpxq

dx
δρpxq

ˇ

ˇ

ˇ

ˇ

8

´8

´

ż

d

dx

„

Kpρq
dρpxq

dx



δρpxqdx

The first term vanishes because the variation δρpxq vanishes at ˘8. The full XC
potential is:

µXC “
4

3
αρ1{3pxq ´

1

2

BKpρq

Bρ

ˆ

dρpxq

dx

˙2

´Kpρq
d2ρpxq

dx2
(46)

(ii) According to Hartree-Fock, the total energy eprsq per particle of the spin
unpolarised homogeneous electron liquid is:

eprsq “ ekprsq ` exprsq “
2.21

r2s
´

0.916

rs
(47)

where rs is the Wigner-Seitz radius (rs “ r3{p4πρqsp1{3q, ρ being the electron density),
ekprsq is the kinetic energy per particle and exprsq is the exchange energy per particle.
Numerical coefficients are in Rydberg energy units.
Compute the pressure P as a function of the density, with pressure defined as:

P “ ´

ˆ

BE

BV

˙

N

(48)

where E is the system ground state energy, V is the volume, and the derivative is
computed at constant number of particles.

Is there an optimal density for the homogeneous electron liquid, and, in such a
case, could you estimate this optimal density?

Solution:

For a homogeneous system:

P “ ´

ˆ

BE

BV

˙

N

“ ´N

ˆ

Bε

BV

˙

N

(49)



where ε is the total energy per particle. (One could argue that E is always N times
the energy per electron, a fortiori for indistinguishable particles; in any case we need
the energy to be a unique function of the average density).
All the partial derivatives are computed at fixed number of particles N .

It is useful to consider:
B

BV
“
Bρ

BV

B

Bρ
(50)

Since ρ “ N{V , Bρ{BV “ ´N{V 2. Therefore:

P “ ´

ˆ

N

V

˙2
Bε

Bρ
“ ´ρ2

Bε

Bρ
(51)

At point (ii) it has been shown that:

ρ
Bε

Bρ
“ ´

rs
3

dεprsq

drs
(52)

Hence:
P

ρ
“ ´ρ

Bε

Bρ
“ ´

rs
3

d

drs

"

2.21

r2s
´

0.916

rs

*

(53)

´
rs
3

"

´2
2.21

r3s
`

0.916

r2s

*

“
2

3

2.21

r2s
´

1

3

0.916

rs

When this expression vanishes at:

2
2.21

r2s
´

0.916

rs
“ 0 Ñ rs „ 5 (54)

P “ 0, implying that at this density the total energy as a function of V is stationary.
A quick sketch of Eprsq shows that the stationary point is a minimum of E versus
V (or vs ρ,or vs rs). In this sense, according to Hartree-Fock, rs „ 5 is a natural
reference state for the homogeneous electron liquid.



Problem (4)

The order n term in the perturbative expansion of the time ordered correlation
function χTABptq is:

1

n!

ˆ

´
i

h̄

˙n ż 8

´8

dt1...

ż 8

´8

dtnxΦ0 | T rÂIptqB̂IĤ1pt1qĤ1pt2q...Ĥ1ptnqs | Φ0y (55)

For the sake of definiteness, assume that Â and B̂ are single particle operators:

Â “
ÿ

αβ

Aαβâ
:
αâβ (56)

B̂ “
ÿ

γδ

Bγδâ
:
γ âδ (57)

and the perturbation Hamiltonian contains a pair interaction term:

Ĥ1I “
1

2

ÿ

abcd

vabcdâ
:
aâ
:

bâcâd (58)

(i) List all the pairing schemes of creation and annihilation operator for the order
n “ 0 term of Eq. 55.

Solution

Pairing schemes for the term of order n, containing 2n` 2 destruction operators and
2n` 2 creation operators are obtained by list creation and annihilation operators in
two parallel columns;
choose any one of the p2n`2q! ways of pairing an element from the first column with
one of the right column.

Hence, at order n “ 0 one has:

Âptq âβptq â:αptq

B̂ âδ â:γ

(59)

and we have two pairing schemes: xâβptqâ:αptqyxâδâ:γy, and xâβptqâ:γyxâδâ:αptqy. The
original sequence in Eq. 55 was: â:αptqâβptqâ:γ âδ. Therefore, the first pairing has p`q
sign (even number of interchanges needed to obtain the ordering in the pairs), while
the second pairing has p´q sign, because the number of interchanges (3) to go from
the original to the pairing ordering is odd.



(ii) Count all the pairing schemes for the n “ 1 term (you don’t need to write
them down) and verify that they are 4! “ 24
Argue that in general the number of all pairing schemes is p2n ` 2q! for the order n
term of Eq. 55.

Solution:

At order n “ 1 one has eight operators, four creation and four annihilation operators.
Each term arising from Wick’s theorem contains four pairs, each made of an annihi-
lation and a creation operator (otherwise the contribution vanishes).
To be more detailed, each contributing term (or "pairing") is of the form:

xâβâ
:
αyxâδâ

:
γyxâcâ

:
ayxâdâ

:

by (60)

To find all possible terms, we resort again to the two-column scheme:

Âptq âβptq â:αptq

B̂ âδ â:γ

Ĥ1 âcpt1q â:apt1q

Ĥ1 âdpt1q â:bpt1q

(61)

We pick the first operator on the left column, and pair with any of the p2n ` 2q
operators on the right column. There are p2n`2qˆp2n`2q choices to do so (p2n`1q
choices from the first column, times p2n` 2q choices from the second column).
Then, we pick a second operator from the remaining p2n` 1q on the left, and pair it
to one of the p2n` 1q operators on the right: p2n` 1q ˆ p2n` 1q choices.
etc.
At the end, we identified rp2n ` 2q!s2 choices. However, many of these are simply
permutations of the same pairs. With the construction above, for instance, we pick
both:

xâβâ
:
αyxâδâ

:
γyxâcâ

:
ayxâdâ

:

by (62)

and:
xâβâ

:
αyxâcâ

:
ayxâδâ

:
γyxâdâ

:

by (63)

that however are identical.
This however is easy to compensate: one only needs to divide by the number of

permutations of pairs in each term, that is p2n` 2q!.
Therefore, the number of distinct terms, or "pairings", is rp2n ` 2q!s2{p2n ` 2q! “
p2n` 2q!.



In the n “ 1 case, the number of distinct pairings is 4! “ 24.

(iii) Write down the integral corresponding to the zero order diagram:

Figure 1: Zero order diagram

Please use the reciprocal space notation (consistent with the labels on the figure).

Solution:

The diagram corresponds to the integral:

´i
ÿ

σ

ż

dk

p2πqd

ż 8

´8

dε

2π
Gp0qσ pk, εqG

p0q
σ pk` q, ε` ωq (64)

The numerical factor includes a piqn`1 “ i, and a p´1q for a single Fermionic
loop,giving ´i.
Matrix elements associated to the external vertices are not specified (one could use
the n̂q and n̂´q operators shown in the figure) since we are not told of the origin of
the diagram.

As a complement (not required), one can add that using the expression:

Gp0qσ pk, ωq “
1

ω ´ εkσ ` iηk,σ
(65)

(where the definition ηkσ ” ηsignpk ´ kF q has been introduced), it is possible to
compute explicitly:

“
ÿ

σ

ż

dk

p2πqd
nkσ ´ nk`qσ

ω ` εkσ ´ εk`qσ ` iηω
(66)

where now ηω ” ηsignpωq.



Problem (5)

Consider a system of Fermions interacting through the pair potential:

vprq “ e2
e´λr

r
(67)

whose Fourier transform is:
vq “

4πe2

q2 ` λ2
(68)

To first order in the interaction strength, the energy of the state that arises from the
non-interacting state with momentum occupation numbers Nkσ is given by:

E rNkσs “
ÿ

kσ

h̄2k2

2m
Nkσ `

1

2V

ÿ

kσk1σ1

rv0 ´ vk´k1δσσ1sNkσNk1σ1 (69)

(i) Substitute Nkσ “ N p0q
kσ ` δNkσ (where N p0q

kσ “ ΘpkF ´ kq are the ground
state occupation numbers) to obtain the Landau energy functional. Give explicit
expressions for the quasi-particle energy and for the Landau interaction function.

Solution:

The energy functional is:

E rδNkσs “
ÿ

kσ

h̄2k2

2m

”

N p0q
kσ ` δNkσ

ı

`
1

2V

ÿ

kσk1σ1

rv0 ´ vk´k1δσσ1s
”

N p0q
kσ ` δN

p0q
kσ

ı ”

N p0q
k1σ1 ` δN

p0q
k1σ1

ı

(70)

“ E0`
ÿ

kσ

«

h̄2k2

2m
` 2

1

2V

ÿ

k1σ1

rv0 ´ vk´k1δσσ1sN p0q
k1σ1

ff

δN kσ`
1

2V

ÿ

kσk1σ1

rv0 ´ vk´k1δσσ1s δNkσNk1σ1

where:

E0 “
ÿ

kσ

h̄2k2

2m
N p0q

kσ `
1

2V

ÿ

kσk1σ1

rv0 ´ vk´k1δσσ1sN p0q
k1σ1N

p0q
kσ (71)

The bare quasi-particle energy is:

Ekσ “

«

h̄2k2

2m
`

1

V

ÿ

k1σ1

rv0 ´ vk´k1δσσ1sN p0q
k1σ1

ff

(72)

This could be defined more explicitly by computing the integral. This is not strictly
required by the exercise. The Landau interaction function is:

fkσ;k1σ1 “
1

V
rv0 ´ vk´k1δσσ1s (73)



(ii) Calculate the Landau parameter F s
1 and the effective mass of the quasi-

particle.

What happens for λÑ 0?

Solution:

According to the definition:

F s
1 “

Np0q‹

2

ż

rv0 ´ vk´k1 ` v0sP1pcos θq
dΩ

Ω
“ ´

Np0q‹

2

ż

vk´k1 cos θ
sin θdθdφ

4π
(74)

vk´k1 “
4π

pk´ k1q2 ` λ2
“

4π

k2 ` k12 ` λ2 ´ 2kk1 cos θ
(75)

The terms in v0 are neglected because the integral from 0 to π of a constant times
P1pcos θq vanishes.
k, k1 have nearly the same modulus (“ kF ) and span all possible relative angles.

F s
1 “ ´

2πNp0q‹

2

ż π

0

cos θ sin θdθdφ

2k2F ` λ
2 ´ 2k2F cos θ

(76)

Change variable from θ to u “ cos θ, du “ ´ sin θdθ.

F s
1 “ ´πNp0q

‹

ż 1

´1

udu

a` bu
“ (77)

where a “ 2k2F ` λ
2, b “ ´2k2F .

F s
1 “ ´

πNp0q‹

b

ż 1

´1

pa` bu´ aqdu

a` bu
“ ´

πNp0q‹

b

"

2´
a

b
log

ˇ

ˇ

ˇ

ˇ

a` b

a´ b

ˇ

ˇ

ˇ

ˇ

*

(78)

“
πNp0q‹

2kF

"

2`
2k2F ` λ

2

2k2F
log

ˆ

λ2

4k2F ` λ
2

˙*

Then it is obvious how to compute the effective mass m‹ “ mp1` F s
1 q.

For λÑ 0 the F s
1 coefficient diverges.



Some useful relations:

Commutation relations for Bosons:

râα, âβs “ râ
:
α, â

:

βs “ 0 (79)

râα, â
:

βs “ δαβ (80)

Anti-commutation relations for Fermions:

tâα, âβu “ tâ
:
α, â

:

βu “ 0 (81)

tâα, â
:

βu “ δαβ (82)

Fourier transform:
fpωq “

ż 8

´8

fpτqeiωτdτ (83)

fpτq “

ż 8

´8

fpωqe´iωτ
dω

2π
(84)

Special relation:
1

x˘ iη
“ P

ˆ

1

x

˙

¯ iπδpxq (85)

Chain-rule for thermodynamic derivatives:

V
B

BV
“ ´ρ

B

Bρ
“
rs
3

d

drs
(86)

In this equation rs is the Wigner-Seitz radius rs “ r3{p4πρqsp1{3q, ρ being the electron
density.

Landau energy functional for the normal electron liquid:

ErNk,σs “ E0 `
ÿ

k,σ

Ek,σδNk,σ `
1

2

ÿ

k,σ,k1,σ1

fk,σ,k1,σ1δNk,σδNk1,σ1 (87)

• Ek,σ is the isolated quasi-particle energy;

• fk,σ,k1,σ1 is the Landau interaction function;

• δNk,σ is the deviation of the quasi-particle distribution from the ground state
one (T “ 0 K).


