
TFY4210 Quantum Theory of Many-Particle Systems
Solution sketch for Exam V18.

1: Quick questions

(a) A single particle operator is an operator that can be written as a sum of operators acting
on a single coordinate in the many-particle wavefunction, i.e.

H =
X
i

h(xi): (1)

The operator in second quantization is given by

H =
X
��

h�jhj�icy�c�: (2)

(b) The wavefunction �(x1; x2; y1; y2) is symmetric in the x'es and antisymmetric in the y's.
There are no speci�c requirements with respect to the interchange of an x with a y, if such
an interchange is even possible.

(c) Both the band insulator and the Mott insulator have a gap in the excitation spectrum, i.e.
it costs a �nite amount of energy to excite the system from the ground state. For the band
insulator, this gap can be understood in terms of the non-interaction dispersion relation and
the Pauli principle. For the Mott insulator, the gap is caused by particle-particle interaction.

(d) According to Noethers theorem, a continuous symmetry is associated with a conserved
quantity. The generator of the symmetry is this conserved quantity.

(e) To obtain the Lehmann representation of a Greens function, one starts with the de�ni-
tion and evaluates the averages in the energy eigenstate basis. The completeness relation
is often sandwiched between operators to replace the operator time dependence with some
exponential factors eiEnt.

(f) Analytic continuation is a method to obtain a retarded Greens function from a Mat-
subara Greens function in the frequency domain by replacing the Matsubara frequency i!n
according to i!n ! ! + i�.

(g) The Bogoliubov approximation consists of replacing the creation and annihilation op-
erators of the macroscopically occupied state of the BEC with the (spontaneously broken)
expectation value, a0; a

y
0 !

p
N0.

(h) The Landau criterion can be derived by relating the energy of the superuid with a single
excitation in the labframe and the restframe of the superuid using a Galilei transformation.
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2: Su-Schrie�er-Heeger model

The Fourier transformation is given by

di =
1p
L

X
k

eikxidk; (3)

where di can represent both ai and bi. Here, xi is the position of the unit cell, and therefore
represents the same position both for ai and bi.

We then get

X
i

(ayibi + h:c:) =
1

L

X
i

X
kq

(e�i(k�q)xiaykbq + h:c:)

=
X
k

(aykbk + akb
y
k) (4)

X
i

(byiai+1 + h:c:) =
1

L

X
i

X
kq

(e�ikxieiqxi+1bykaq + h:c:)

=
1

L

X
i

X
kq

(e�i(k�q)xieiqabykaq + h:c:)

=
X
k

(eikabykak + e�ikaaykbk) (5)

Introducing  y
k = (ayk; b

y
k), we now get

H =
X
k

 y
kHk k = �

X
k

 y
k

�
0 � + �e�ika

� + �eika 0

�
 k: (6)

Introducing a unitary transformation

 k =

�
ak
bk

�
= Pk

�
ck
dk

�
= Pk�k; (7)

the new operators ck and dk automatically satisfy fermionic commutation relations. The
Hamiltonian takes the form

H =
X
k

�ykP
y
kHkPk�k (8)

Choosing Pk to diagonalize Hk, the Hamiltonian becomes diagonal in the new operators ck
and dk, where the single particle excitation energies are given by the eigenvalues of Hk. We
then get

0 = det

�
!k � + �e�ika

� + �eika !k

�
= !2

k � (� + �eika)(� + �e�ika)

= !2
k � (�2 + �2 + 2�� cos ka) (9)
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Figure 1: Dispersion relation at � = 1 and � = 2�. The band gap is 2j�� �j.

Hence, the dispersion relation is

!k = �
p
�2 + �2 + 2�� cos ka (10)

and the Hamiltonian can be written in the given form.

(b) For some given � and �, �k varies with the cosine between
p
�2 + �2 + 2�� = � + � at

k = 0 and
p
�2 + �2 � 2�� = j�� �j at k = ��=a. The dispersion relation is periodic with

period 2�=a. We plot the dispersion relation for the (reduced) �rst Brillouin zone in �gure 1.

(c) Since the electrons are spinless and there are 2L lattice sites, the total number of states
is 2L. With N = L spinless electrons, half of the states are �lled, and at zero termper-
ature, this corresponds to complete �lling of the lowest band. To make an excitation, an
electron must therefore be lifted to the upper band, and the energy cost of this is the gap
size � = 2j���j. At zero temperature, the system is therefore a conductor for � = �, while
a �nite hopping anisotropy j� � �j gives an insulator. At �nite temperature T , we have a
conductor when the gap is small compared to the temperature.

(d) Drawing a �nite chain, we see that the leftmost and rightmost hopping amplitudes are
both �. Hence, when we let � $ �, the system is slightly changed, since the edge hopping
amplitudes are being changed. Setting � = 0, we decouple the Hamiltonian into pairs of
coupled operators, i.e.

H =
LX
i=1

H�=0
i = ��

LX
i=1

(ayibi + byiai) =
X
i

(ayi ; b
y
i )

�
0 ��
�� 0

��
ai
bi

�
; (11)

To �nd the energy eigenvalue, we have to diagonalize each Hi. Using the matrix form above,
the eigenvalues !i are obtained by

0 = det

�
!i �
� !i

�
= !2

i � �2 ) !i = ��: (12)
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The system therefore has energy eigenvalues �� with degeneracy L each.

For � = 0, the Hamiltonian still decouples into pairs,

H =
L�1X
i=1

H�=0
i (13)

Now, however, there are only L� 1 pairs, and the operators for the lattice sites at the edges
are not coupled to anything. The states with one particle at the lattice sites on the edges of
the sample are therefore eigenstates with eigenvalue 0, and the spectrum is !�=0 2 f0;��g,
where the degeneracy of the eigenvalue 0 is 2 and the degeneracy of �� is L� 1 each.

For the bulk dispersion relation, setting either � = 0 or � = 0, we obtain dispersion relation
�� (or ��). Since the eigenvalue 0 obtained for � = 0 is due to an edge e�ect, it is not
captured by the bulk dispersion relation.

(e) To demonstrate the presence of edge states in a �nite system, we �rst introduce

 y = (ay1; b
y
1; a

y
2; b

y
2; : : : ; a

y
L; b

y
L) (14)

The Hamiltonian can then be written in matrix form H =  yM , where

M = �

0
BBBBBBBBBBB@

0 � 0
� 0 � 0
0 � 0 � 0

0 � 0 �
0 � 0

. . .

0 �
� 0

1
CCCCCCCCCCCA

: (15)

Introducing new operators ci and di, i = 1; : : : L, and putting these into the column vector
�, we may diagonalize the Hamiltonian by a unitary transformation. Choosing some appro-
priate system size L, we may diagonalize the matrix numerically to obtain the eigenvalues
and eigenvectors. If we let  = P�, where P diagonalizes M , columns of P are eigenvectors
of M . For a given eigenstate jni,

jni = �ynj0i =
X
j

(P y)�nj 
y
j j0i =

X
j

(P )jn 
y
j j0i (16)

The probability for a particle in state jni to be at the lattice site corresponding to operator
j in  is therefore jPjnj2, which is the j-th component of eigenvector n of M . By plotting
the eigenvectors, we may therefore demonstrate the presence of edge states.

Full credit is also awarded for simply pointing out that one may �nd and plot the eigenvec-
tors of M .
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3: Spin currents of Heisenberg model

(a) Write the Hamiltonian as H = HJ + Hh, where HJ is the Heisenberg term and Hh is
the magnetic �eld term. We assume h � 0, so that the ground state is given by all spins
pointing in the z-direction. We are given that HJ can be written in the form

HJ = C0 +
X
k

!h=0
k aykak (17)

with some constant C0, and where ak is a magnon annihilation operator. The magnetic �eld
term can be written as

Hh = �h
X
i

Sz
i = �h

X
i

(S � ayiai) = �NhS + h
X
k

aykak; (18)

where N is the number of lattice sites. The Hamiltonian then becomes

H = C +
X
k

(!h=0
k + h)aykak; (19)

and the dispersion relation is !k = !h=0
k + h.

With h = 0, the Hamiltonian is invariant under any global spin rotation. These form a
continuous set of transformations. Furthermore, the ground state consists of all spins point-
ing in the same direction, and this ground state breaks the continuous rotation symmetry.
According to Goldstones theorem, the excitation spectrum must therefore be gapless. By
Taylorexpanding the cosine in !h=0

k , it is clear that !h=0
k ! 0 for k ! 0, consistent with

Goldstones theorem.

When we add a magnetic �eld in the z-direction, the Hamiltonian is only invariant under
spin rotations around the z-axis. However, the ground state is also invariant under this
transformation, and therefore, there is no spontaneous symmetry breaking. Goldstones the-
orem does not require a gapless excitation spectrum, and looking at the excitation spectrum,
there is a gap of size h.

(b) Since the Heisenberg EoM is i _Sz
i = [Sz

i ; H], we need to �nd the commutator [Sz
l ; H]. H

consists of two terms. However, since Hh is simply a sum over the z-component of the spin,
it commutes with Sz

l . Then

[Sz
l ; H] =

X
i;�

[Sz
l ;�JSi � Si+�] = �J

X
i;�

[Sz
l ; S

z
i S

z
i+� + (1=2)(S+

i S
�
i+� + S�

i S
+
i+�)]

= �(J=2)
X
i;�

[Sz
l ; (S

+
i S

�
i+� + S�

i S
+
i+�)] (20)

There are now two cases we have to consider, l = i and l = i+�. Using the spin commutation
relation
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[Sz; S�] = �S� (21)

given in the formula sheet, we get

[Sz
l ; H] = �(J=2)

X
�

�
(S+

l S
�
l+� � S�

l S
+
l+�)� (S+

l��S
�
l � S�

l��S
+
l )
�
: (22)

Moving this commutator to the right hand side of the Heisenberg equation and dividing out
the i, we get

_Sz
l + (�iJ=2)

X
�

�
(S+

l S
�
l+� � S�

l S
+
l+�)� (S+

l��S
�
l � S�

l��S
+
l )
�
= 0 (23)

We may then identify

j�(l) = (�iJ=2)(S+
l S

�
l+� � S�

l S
+
l+�): (24)

First, we note that this is a Hermitian operator since S+
i = (S�

i )
y. Furthermore, we see that

the operator S+
l S

�
l+� represents the transfer of an up spin from l + � to l, i.e. from state #"

to state "#, i.e. ow of spin up to the left. The other term represents "# goes to #", i.e.
ow of spin up to the right. Since this is in the opposite direction, this term comes with a
relative minus. The operator therefore seems to make sense.

(c) We now want to express the current operator in terms of magnon operators. We then in-
troduce the Holstein-Primako� bosons. Since we are working within linear spin wave theory,
we may neglect all terms that contain three or more creation and annihilation operators. To
this order,

S+
i '

p
2Sai; S�

i '
p
2Sayi ; (25)

where we Taylor expanded the square root expressions to zeroth order in ayiai=2S. Inserting,
we obtain

j�(l) = (�iJS)(alayl+� � aylal+�) (26)

The total spin current then becomes

j� = JS
X
l

i(aylal+� � ayl+�al)

= JS

�
1

N

�X
l

X
kq

(ie�i(k�q)�rleiq�aykaq + h:c:)

= JS
X
k

i(eik� � e�ik�)aykak

=
X
k

(�2JS sin k�) a
y
kak (27)
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When calculating the average current hj�i, aykak ! haykaki. The average value is a thermal
average calculated with respect to the full Hamiltonian. When there is no magnetic �eld
whatsoever, haykaki = hay�ka�ki, and the contributions from �k in the above sum cancel out
to give hj�i = 0 since sin k� is antisymmetric in k.

(e) To obtain the spin conductivity, we Fouriertransform the equation hj�i = �rh assuming
� is constant. We discretize the gradient by writing it as rh = hi+� � hi. Then,

hj�(q; !)i = �
X
l

e�iq�rl(hl+�(!)� hl(!)) = �(eiq�� � 1)hz(q; !) (28)

Since we are looking at a static problem and the current is position independent, we may
consider q! 0 and ! ! 0 (like we did for the electric conductivity), and obtain

hj�(q! 0; ! ! 0)i ' � iq� h
z(q! 0; ! ! 0) (29)

This is on the same form as equation (7) in the exam, and by considering the same limit of
q! 0; ! ! 0 there, we may compare the two expressions and obtain �.

(f) The given expression for the response function � contains a current-spin response function.
The continuity equation relates a time derivative of the spin to some spin currents. By using
the identity given in the hint, we may write the factor ei!t in the integral as

ei!t =
1

i!

�
d

dt

�
ei!t (30)

Notice that this gives the factor (i=!) present in the Kubo formula. We may then use
partial integration to transfer the time derivative to the commutator. Since we have time-
translational invariance in the unperturbed Hamiltonian (i.e. not including the magnetic
�eld), we may rewrite the commutator using

[j�(q; t); S
z(�q; 0)] = [j�(q; 0); S

z(�q;�t)]: (31)

The time derivative of this commutator becomes a commutator between the current and the
time derivative of the spin, and after inserting the continuity equation, we have replaced the
z-component of the spin in the commutator with a current, and we therefore get a current-
current response function. The boundary term from the partial integration gives a term
which corresponds to the constant term in the Kubo formula.

4: Greens functions and impurity scattering

(a) We want to show that G(�; � 0; � + �) = �G(�; � 0; �). We restrict the argument of the
Greens function to the interval (��; �), and should therefore consider �� < � < 0. Then,
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G(�; � 0; � + �) = �hT�c�(� + �)cy�0(0)i = �hc�(� + �)cy�0(0)i
= �(1=Z) Tr

�
e��HeH(�+�)c�e

�H(�+�)cy�0

�

= �(1=Z) Tr
�
eH�c�e

�H�e��Hcy�0

�
(32)

Using invariance of the trace under cyclic permutations, we may now rewrite this as

G(�; � 0; � + �) = �(1=Z) Tr
�
e��Hcy�0e

H�c�e
�H�

�

= �(1=Z) Tr
�
e��Hcy�0(0)c�(�)

�

= ��hT�c�(�)cy�0(0)i = �G(�; � 0; �); (33)

using the de�nition of the time ordering operator and that � < 0.

(b) The Greens function in the imaginary time domain is given by

G(�; � 0; �) = 1

�

X
!n

e�i!n�G(�; � 0; i!n) (34)

Then,

G(�; � 0; � + �) =
1

�

X
!n

e�i!n�e�i!n�G(�; � 0; i!n) (35)

To satisfy the symmetry relations from subproblem (a), we then need exp(�i!n�) = �, which
gives

i!n =

�
(2n+ 1)�i=�; � = �1 (fermions)
2n�i=�; � = +1 (bosons)

�
; (36)

where m is an integer. These are the Matsubara frequencies.

(c) The diagrams at order 0, 1, and 2 are given in the upper panel of the �gure, while the
diagrams at order 3 are drawn in the lower panel. The self energy diagrams are marked with
a tick. The corresponding expressions are

G3A(k; ipn) =
X
k1;k2

G(0)(k)NU(k� k1)G(0)(k1)U(k1 � k2)G(0)(k2)U(k2 � k)G(0)(k)(37)

G3B(k; ipn) =
X
k1

G(0)(k)NU(k� k1)G(0)(k1)NU(0)G(0)(k1)U(k1 � k)G(0)(k) (38)

(d) Using the Dyson equation is equivalent to including all Feynman diagrams that can be
constructed by forming products of the diagrams in the self energy. To obtain diagrams at
order n = 5, we therefore have to put together diagrams at order 1, 2 and 3. By putting
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Figure 2: All Feynman diagrams up to order n = 3 in the impurity potential. The irreducible

diagrams are marked with a tick, while the reducible diagrams are marked with a red line where

an electron line can be cut to cut the diagram in two. The irreducible diagrams have been

labelled. To obtain the self energy diagram corresponding to an irreducible diagram, one may

simply remove the external legs.

x

x

x x x x x x x

Figure 3: All inequivalent Feynmandiagrams at order n = 5 with m = 3 impurity crosses that

can be constructed from self energy diagrams up to order 3.

together diagrams, the order in the impurity potential is the number of interaction lines,
which is obtained by adding the order of the self energy diagrams that we put together.
Possible ways to sum 1, 2, 3 up to 5 are

3 + 2; 3 + 1 + 1; 2 + 2 + 1; 2 + 1 + 1 + 1; 1 + 1 + 1 + 1 + 1

Notice that for n = 1 and n = 2, there is only one possible self-energy diagram, which then
has a �xed number of impurity crosses. We have to self energy diagrams to choose between
at order n = 3, and have to pick the one which gives 3 impurity crosses in total.

For 3+2, the diagram �2 has one impurity cross. We then have to combine it with diagram
�3B, which has two impurity crosses.

For 3+1+1, the diagram �1 has 1 cross, and with two such diagrams, the last diagram can
only have 1 cross. Thus, we need to combine �3A with two of the diagrams �1.

For the remaining possibilities, there is no choice. The only possibility with 3 crosses is
2+2+1. Hence, there are 3 di�erent diagrams satisfying all requirements. These are shown
in �gure 3.
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