
TFY4210/FY8916 Quantum theory of many-particle systems
Solution sketch to the exam May 22, 2019

Problem 1-1

a) The assumptions made in the approximation are: 1) Only one electron (or-

bital) per site. 2) There is a small amplitude for hopping between sites

(characterized by t), in this particular case only nearest-neighbour jumps

are allowed.

b) t is the hopping amplitude. a†j (aj) are creation (annihilation) operators for

electrons on sublattice A, and b†j+ℓ (bj+ℓ) creation (annihilation) operators

for electrons on sublattice B.

Problem 1-2
Start with the Hamiltonian:

H = t
∑

j

3
∑

ℓ=1

(

a†jbj+ℓ + b†j+ℓaj

)

(1)

Considering only the first sum, and substituting

a†j =
1√
N

∑

k

e−ik·rja†k (2)

bj+ℓ =
1√
N

∑

k

eik·(rj+δℓ)bk (3)

we get

∑

j

3
∑

ℓ=1

a†jbj+ℓ =
∑

j

3
∑

ℓ=1

1√
N

∑

k

e−ik·rja†k
1√
N

∑

k′

eik
′·(rj+δℓ)bk′

=
∑

k,k′

3
∑

ℓ=1

eik
′·δℓa†kbk′

1

N

∑

j

ei(k
′−k)·rj

=
∑

k,k′

3
∑

ℓ=1

eik
′·δℓa†kbk′δk′k

=
∑

k

3
∑

ℓ=1

eik·δℓa†kbk (4)
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The second sum is just the Hermitian conjugate of the first sum, so

∑

j

3
∑

ℓ=1

b†j+ℓaj =
∑

k

3
∑

ℓ=1

e−ik·δℓb†kak (5)

Defining

S(k) =

3
∑

ℓ=1

eik·δℓ (6)

the Hamiltonian (1) can be written

H =
∑

k

(

tS(k)a†kbk + tS∗(k)b†kak

)

=
∑

k

(

a†k, b
†
k

)

(

0 tS(k)
tS∗(k) 0

)(

ak
bk

)

(7)

as was to be shown.

Problem 1-3
Substituting

S(q) =
3a

2
(qx − iqy)

in

h(q) =

(

0 tS(q)
tS∗(q) 0

)

we get

h(q) =
3at

2

(

0 qx − iqy
qx + iqy 0

)

=
3at

2

[

qx

(

0 1
1 0

)

+ qy

(

0 −i
i 0

)]

(8)

= ℏvF (σxqx + σyqy) (9)

where

vF =
3at

2ℏ
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Problem 2-1
Setting the mass equal to zero in the Dirac equation we get

iℏγµ∂µΨ = 0

which can be written

iℏγ0∂0Ψ = −iℏγk∂kΨ

iℏγ0∂tΨ = cγkpkΨ

where ∂t =
∂

∂t
=

1

c
∂0 and pk = −iℏ∂k. Expressing Ψ in terms of two two-

component spinors ϕA and ϕB

Ψ =

(

ϕA

ϕB

)

and using

γ0 =

(

I 0
0 −I

)

, γk =

(

0 σk

−σk 0

)

we get
(

iℏ∂t 0
0 −iℏ∂t

)(

ϕA

ϕB

)

=

(

0 σkpk
−σkpk 0

)(

ϕA

ϕB

)

which is equivalent to the set of equations:

iℏ∂tϕA = σkpkϕB (10)

iℏ∂tϕB = σkpkϕA (11)

Adding (10) and (11), we get

iℏ∂t(ϕA + ϕB) = σkpk(ϕA + ϕB) (12)

Subtracting (11) from (10), we get

iℏ∂t(ϕA − ϕB) = −σkpk(ϕA − ϕB) (13)

Introducing ϕ± = ϕA ± ϕB and σ · p = σkpk, Eqs. (12) and (13) can be written

iℏ
∂ϕ±

∂t
= ±cσ · pϕ±

which was to be shown.
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Problem 2-2

a) Substituting the plane-wave solution ϕ+ = Ne−
i
ℏ
(Et−p·r)u, where u is a

two-component spinor into the Weyl-equation, we get

c(σxpx + σypy)u = Eu

The eigenvalues can be found from solving the secular equation

∣

∣

∣

∣

−E c(px + ipy)
c(px − ipy) −E

∣

∣

∣

∣

= 0

That is

E2 − c2(px + ipy)(px − ipy) = 0

E2 = c2(p2x + p2y) (14)

That is,

E± = ±c|p|
which was to be shown.

b) Close to the K-point of graphene, the electrons behave as effectively mass-

less relativistic particles, with a velocity vF (which is approximately 1/300c).

Problem 3-1 The Matsubara Green function for noninteracting electron is

G(0)(ν, τ) =−〈Tτ (cν(τ)c
†
ν(0))〉

=−θ(τ)〈cν(τ)c†ν(0)〉+ θ(−τ)〈Tτ (c
†
ν(0)c

†
ν(τ))〉

=−e−ξντ
[

τ(θ)〈cνc†ν〉 − θ(−τ)〈c†νcν〉
]

=−e−ξντ
[

τ(θ)〈1− c†νcν〉 − θ(−τ)〈c†νcν〉
]

=−e−ξντ [τ(θ)(1 − nF (ξν))− θ(−τ)nF (ξν)] (15)

where

nF (ξF ) = 〈c†νcν〉 =
1

eβξF + 1

is the Fermi-Dirac-distribiution. Fourier-transfoming G(0)(ν, τ), we get

G(0)(ν, ipn) =

∫ β

0

dτeipnτG(0)(ν, τ)
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=−(1 − nF (ξν))

∫ β

0

dτe(ipn−ξν)τ

=−(1 − nF (ξν))

[

1

ipn − ξν
e(ipn−ξν)τ

]β

0

=
1

ipn − ξν
(−1)(1− nF (ξν))

[

e(ipn−ξν)β − 1
]

(16)

Now, using

eipnβ = e(2n+1)π = −1

and

1− nF (ξν) =
eβξν

eβξν+1

we get

G(0)(ν, ipn) =
1

ipn − ξν

eβξν

eβξν+1

[

e−βξν + 1
]

=
1

ipn − ξν
(17)

Finally, we get the retarded Green function for noninteracting electrons by substi-

tuting ipn → ω + iη in the Matsubara Green function:

GR
0 (ν, ω) =

1

ω − ξν + iη

Problem 3-2
After averaging the position of the impurities, the electrons will ’see’ the same

environment everywhere in the system, thus the system is made translationally

invariant, and the Green functions will be diagonal in k.

Problem 3-3

a) A reducible diagram is a diagram which may be divided into two parts by

cutting an internal line. Following this definition, diagram (A) is reducible,

and (B) is irreducible.

b) Mathematical expression:

∑

k1

G(0)(k)NU(k − k1)G
(0)(k1)U(k1 − k)G(0)(k)NU(0)G(0)(k)
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Problem 3-4

a) The spectral function of the retarded Green function is

A(k, ω) =−1

π
ImG

R
(k, ω)

=−1

π
Im

∫ ∞

−∞

dteiωtGR(k, t)

=
1

π
Im

∫ ∞

0

dtie−( 1
2τ

−i(ω−(ξk+nimpu))t

=
1

π
Im

[

ie−( 1
2τ

−i(ω−(ξk+nimpu))t

−1/(2τ) + i(ω − (ξk + nimpu))

]∞

0

=
1

π
Im

i

1/(2τ)− i(ω − (ξk + nimpu))

=
1

π
Im

i/(2τ)− (ω − (ξk + nimpu))

(ω − (ξk + nimpu))2 + (1/2τ)2

=
1

π

1/(2τ)

(ω − (ξk + nimpu))2 + (1/2τ)2
(18)

which was to be shown.

b) We shall show that the spectral function satisfy the sum rule
∫ ∞

−∞

dωA(k, ω) = 1

∫ ∞

−∞

dωA(k, ω) =
1

2πτ

∫ ∞

−∞

dω
1

(ω − (ξk + nimpu))2 + (1/2τ)2

=
2τ

π

∫ ∞

−∞

dω
1

(2τ(ω − (ξk + nimpu))2 + 1)
(19)

Now, changing variable

x = 2τ(ω − (ξk + nimpu)), dx = 2τdω

we get
∫ ∞

−∞

dωA(k, ω) =
1

π

∫ ∞

−∞

dx
1

x2 + 1
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=
1

π
[arctan x]∞−∞

=
1

π
π

= 1 � (20)
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