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19 Let us firstrewritethe
Hamiltonian in terms of

the number operators Mir=CErCir:

i =-mPir-h(Hir-nix)
- [Circit.

↳ij35

Shortcut:The Heal number of

electrons witha given spin t

is equal in every basis:

Nr =EUr= Unr



this can be used torewritethe

number operator terms trivially:

F =

-MPrr-hE(Mar-Ka
- [CrCir.

zij3t

Ifyou didn't think ofthis

shortcut, the Fourier transformation

ofECIrCir is easily done using
the equationE,eilk-klri=Sr,

providedin the appendix.



Next, letus consider hopping terms.
This is mosteasilyalone using
the inverse Fourier transformation:

=Schreik I
- ik'V

Cr
=CreI

Thus we get:

CrCir=E CrCur
ku

xGeilnr:-k'.r;)
sij]

Like in class, we now let:

2 =E↳ij
where S = r-V,is a nearest-neighbor vector.



We can they write:

K. Vi -k.r;
=K.r:-k. (r, +5)

=(k -k').r, - k.S

As a consequence:

*
Eeilnr-ki.r;)
sij]

=

Ie
ick-n').r: [e

- ik'. S

-
Sun Su

To evaluateWu, use thatfor

a square lattice witha =1:

66+ex, -ex, +

2y,
- 2,3

b
=
kxex +kjey



thus, we musthave UI=2CCOSR' + Cosby).

putting together these results:

- t& cirCir=-2t4 Chr Cur
<ij7+

(COS Rx+ cos ky).

For the Hamiltonian:

F =

-MPrr-hE(Mar-Ka
- It Per (COS Rx +cosky).

This can be written 11 =Eurkur with:

Ear = -M-2hr-2t(coskx+ cosky).

Here, Ilet5 = +1/2 and5= -12

be the numerical values of 5GET, t3.

Cusing 8 =I1 as numerical values also accepted.)



10 To order OCKY We have:

COS k=
=1 - EK

COS Ky = 1 - I ky

:. COS Rx + cosky 2 - Ik,
where 2=Kx2 + 12. Thus we find:

Eur= -M-4t-245+ tk2.

this takes the form

Evr= EortEx,

where m+=2 It is the effective

electron mass. (Sanitycheck:Higher

hopping t =more mobile electrons

=>lower effective mass. This fits.)



the two curves look like:

-

Ext

E--it
Ear

> I

the exchange splitting his the

energy difference between spin-up

andspin-down electron bands. It

is a signature ofmagnetism:

Electrons can lower their energies

by flipping their spins from 1 to 4.



12 Particles withenergy eigenvalues
Eur follow the Fermi-Dirac distribution:

<NewT=
exp(Evr(t) +1

Here, T is the system temperature.

14 We basically have torewrite

the Hamiltonian in the form:

H =CtrHir, jr'Cir'
ij 50'

in order todetermine Hir, jr
the hintin the problem is that

we can write (as in homework problems):

i =xi +Lyi,
where Xi, Yit 90,1,..., L-13. This
maps lattice coordinates (Xi, yi) to indices i.



You can verify thatthis matrix

reproduces the original Hamiltonian:

Hir,j5' =Hx+2ye,r,x; +hy;,5
= -MSuriSxix;Sy:yj
- Srri[Sxix; (82:,y; + +Syi,y;-1)

+ Sy:;(8xi,x; +1 +8xi,x;-1)]
- hSxix; Syiy;(Sur -SrL).

The logic is thatSij=Sxix;Sycy;
factors representon-siteterms,

while e.g. Sxix;Sy:, yit would
be a nearest-neighbor interaction

along they direction.



1. In 14, we expressed the

Hamiltonian it in terms of

a matrix A. Since it andH

have the same eigenvalues, we

can numericallydiagonalize I
toobtain the eigenvalues [En3.

· Numerically, we cannotevaluate
DCE) for every energy E, butonly
a discrete subsetGEM3. To see

the 5 spikes, they need a

finitewidth in thatcuse.

Based on the appendix, we can use:

S(x) =E2,
where we choose a bit value for
& instead ofletting 2=0.



2"When IC0, energy is minimized

when S,and S;are parallel.
this creates ferromagnetism;

·..

⑧..

When 740, energy is minimized

For antiparallel configurations. This
causes antiferromagnetism (Neel State):

* ·
⑳

/
-
% %

Quantum-mechanically, the antiferromagnetic
groundstate changes due to quantum
fluctuations even at zero temperature.



20 the 730 case is the ferromagnetic

case. Letus take the Z axis to

be the quantization axis, so the

classical groundstateis Siz= S.

From the appendix, we get:

Sit;9: VE59:
Si-= atsta, =sat

Siz =S-atA;

The appendixalso provides:

SxIiSy =St

which implies that:

Sx =I(s++S-)
Sy =ii(s+ - 5-)



Letus use these to write dotproducts:
Si.S; =Six Six+SiySjy +SizSjz

=(SS;+ +Si+S;- +S:-SittS)
-> (SS;+- SitS;--Si-Si++SS,)
+ SizSiz

=)Si+S;- +Si-5;t) + SizSiz
~S(a,a! +a!a;) +52 - S(a,ai +a,a;),

where we have neglected higher-order

terms in a andat. We now use:

(a;,a!] =a,aj - a,ai =bij
=

0

swe only sum over ifj.)
Thus we have:

H = - 7- [[S+s(ata; + a59: -a5a;-aa,].
(ij)



Simplifications:
· ES2=YNS2 for a square lattice,
Lijh
where N is the number of lattice

sites, 4 is the number of nearest

neighbors per site.

· ata; and ala;contribute equally,
since we sum over all sites.

· ata;and ala, similarly
give the same contribution.

·

Saai=4Eatai sincethanasij

thus, we arrive at:

1 = - 4N7S+875 [ata:
-

255919;



20 Shortcut:There is no fundamental
difference between Fourier - transforming
a fermionic andbosonic operator,

especially when both are defined

on the same lattice (2D square).

In problem 1, we established:

&CrCir=[crCur
i

k

[crcr =2 Car Car
hij7 *

x2(skx +cosky).

Replacing Cir -> C; andChr- 99,
the mathematics is the same.

(Ifyou didn't notice, it's ofcourse

also fine tore-derive these transforms.)



This leads us to the result:

1 = - 4N7S+875 [ata:
-255 Eata;

dij

=- 4N7s
+

855a9q
-

4754(0sqx+ cosqy)a9q
=

Eo+EqUq,
where we find:

Er =
- 4NES2

Eq =47S(2-cosqx-cosqy).



24Magnous describedby aq, atyare
bosons. These follow Buse-Einstein

statistics. Thus, we can write:

(nq) =eq11)- 1

Where T is the system temperature.



39 We want to draw all diagrams
of this class:

- -
?
X I

To order 0 (92) We have:

I

- (phonon- mediated

electron - electron

xi interaction)



To order OCg"), we also get:

↳

..line same, butwith

one "bubble" correction)

i
↳⑧

S S (Electrons exchange

done,
two pronous)



30 We wantall diagrams like this:

> ? >

To order 8(1) we have:

> (non-interacting
propagator

TO order O(92) we also get:

7 7
celectron emits

·

. then absorbs phonon)

To order O(g4) we also gett

7 30 c⑧7 ⑧ > 7

Si -Si
(two emissions andabsorptions)



>.. (same, but

Si
⑧ >

reordered)

(same, but.. reordered)

7 > celectron emits

3.
a phonon, which

fluctuates into

an electron-hole

pair, andis
then absorbed)

30 The Dyson equation is:

G =Goll-Go)-
=Go+ GoGo+GoGofGo

[to order O(S2)]



The simplestexample of an amputated

one-particle irreducible diagram is:

-
=oneErz
(The OCg2) contribution)

Dyson's equation withthis is:

G =Go +GrEzGo+GoE,GoSz 4o

- >

·
t > 7 >

-
- o>I >8)

This illustrates thatthe one-particle
reducible diagrams "withlegs" are generated
by Dyson's equation when I contains
one-particle irreducible diagrams "without legs".
The same pattern repeats atall
orders in 9 and5. Thus, itis
sufficient to include irreducible diagrams
in 2 andletDyson's equation handle the rest.



34 Only the one-particle irreducible

amputated diagrams contribute. Thus:

I = -. 0(g2)

+ m ⑧(gY)

+oS. 0(g")

&
. 0(g4)I ⑧ ⑧

-
+...

Let us now apply the Feynman
rules in the appendix to the firstone.



q, w

-91
⑧ 7 ⑧

9 - q
1,3 ↳'' R, E

·

Propagators:Do (q, w) GoCk', 3')

· Vertices:9q9-g=1991
· Energy and momentum conservation:

k=x-q, =E - w

· Overall prefactor: it(
-2)0 =i

· Integrate remaining energy w, momentum 1.
Include a factor V2H,

thus, we get:

(dw 1992 Dolq,w)Golb-q, s-wh



To order 0(97, we can then

Writ E(4,37 =E19912 I(9, 1,97 where:

I = dw Do(q, w) Golk-q, -w)
-A

The appendixspecifies that we can

assume the integrandgoes tozero

at complexinfinity. Thus, we can

close the contour in the upper

complexhalf-plane using the

contour (r) where -> 0,

as defined in the appendix.

Thus, we now have:

I =8w DoCq,w GoCk-q,



Let's now use the definitions of

Do and Go from the appendix:

Do (q, w) Golk-q, 9-w)

=Sw-wqtiot-wwqriot)
xF(En-q-EF)

+0(9=-En-q)E E -w-En-qtirt 9 - w-ex-q-io3.
According tothe residue integral

identities in the appendix, only
products offractions of the form

I

waterfistgive finite contributions.

There are two such terms;

I O(Ex-q - Et
(i) w-wqtist"E-w-En-q tiot
=- En-q-EF).w- 'wqtiotw-js-Eng) - ist

=X, =,



⑦(3= -En-q)(ii) -wtwq-iot" s-w-Emq-iot
I

=+

F([=-Eng).w- (-wq) -io+w - (g-Eng)+iot
=Xz =z

Using the appendix integral identities,
the integrals of the above are?

2: 0 (Er-q-EF)
- O(En-q-EF).= =

g-Enq-wq

+O(3F-En-q) -=+
2πi 0(E=-En-q)
- E+ Ex-1-Wq

The integral had an overall

prefactor t =-ti. thus:

I =F(En-q-EF) + ⑦(E= - Ex -q)
E- Ex-q-Wq E-Er-q+Wq

This is the solution tothe problem.



30 We again consultthe Feynman
rules in the appendix. Notethat

a lotof work can be saved

ifwe choose smartvariable names,

which alreadyaccountfor momentum

andenergy conservation. (Note

that ery phonon propagator
has the same momentum and

energy due toconservation at vertices.)
R,, E, R2,32 Ks, Es

&A.G.w

kz +1 ves+9 f,a~ >

&Ez +W Ez +w

7 ⑧

k,, ve,E
K-q, E-w



The Feynman rules give us:

4
+O

:Is Jawjes,dandes E19e
k,K2K, q

*Do (q,w) Do(q,w) Do (q,w) Do (7, w)

xGo (K,, 3,) Go (k, + q, E, +w)
xGo(2,32) Go(kz +q,Ez +w)
*Go(ks,Es) Go(k3 +q,9y +w)

xGo (r-q, 3-w).

Notethat there are many correct

ways towritethe answer. If you

chose differentenergy andmomentum

variables, the details may differ.


