Final Exam, SIF4052, Fall 2000
Solutions

Problem 1

We Fourier transform Eq. (1.1) to find

Wi = <5> K (s1.1)
p

leading to a long wavelength dispersion relation

W = (%) k2. (s1.2)

We then expand the exact dispersion relation in Eq. (1.2) to lowest order
in k to get the long wavelength limit:

w? = (%) <k—2a>2 : (51.3)

Comparing Egs. (s1.2) and (s1.3), we find

Ka® K
_ _ 1.4
‘T M PT (s1.4)

where we have used that p = M/a3.

Note that this expression is somewhat different from the one given in
Elliott’s book (¢ = Ka — on page 222). The reason for this is that El-
liott considers a one-dimensional system, while we are dealing with a three-
dimensional crystal.

Problem 2
a) The periodic boundary conditions impose the periodicities
(7 + Lé,) = u(r) (s2.1)
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and
(7 + Lé'y) = i(r) , (s2.2)

where L is linear size of system, so that L? = Na?. Looking at Fourier modes
of the wave (7, t) = d(k,t) exp(ik - 7), Egs. (s2.1) and (s2.2) impose

ekel =1 (52.3)
and .
ekl =1, (s2.4)
Hence, we have that
27N,
ky = 7TLn , (s2.5)
and 5
™.
ky =", 2.6
B (52.6)

where n, and n, are integers. The spacing between allowed k values in the z
direction is 27 (ng, + 1)/L — 2mw(n,) = 27 /L, and likewise for the y direction.

Hence, the density is
L\?> Na?
= (=) == 2.7
P (27r> 472 (527)

b) kp is given by the equation
prk%: =N . (52.8)

Combining this expression with Eq. (s2.7) gives
N N4r? 2
kp =1 — 41— = = 2.9

c¢) The density of states in k space is

which is the answer.

g(k)dk = p2rkdk , (52.10)
where p is given in Eq. (s2.7). The dispersion relation of the system is

w=vk . (s2.11)



Hence, the density of states is given by
dk 1
g(w)dw = g(k) o dw = 2mp % . dw . (s2.12)

where we also used Eq. (s2.11). Combining this expression with Eq. (s2.7),

we find the final answer
N 2
g(w) = ( ¢ ) w . (s2.13)

2mv?

d) The Debye model calls for introducing a cutoff in the density of states at
a frequency wp. This cutoff is determined by the integral

wp Na*
/0 9(w) dw = iz WD = 2N . (s2.14)
Hence,
wp = V81 z . (52.15)
The relation between wp and the Debye temperature ©p is
h(JJD = kB@D . (8216)
Thus, we have
¢ g 1 (52.16)
= m — . .
b /{BCL

The heat capacity is given by

ou
= — 2.1
C 5T (s2.17)
where the energy is given by

wp hw hwp  Na?  (hw)?d(hw)
U :/0 holkaT 1 g(w)dw :/0 A2 ehalkaT — 1 (s2.18)

If we now scale the integration variable in this integral, hw — hw/kpT = z,
Eq. (s2.18) becomes

Na? On/T x2dg
= —— T)3 / _— 2.1
Amh2v? (ksT) 0 er—1"7 (52.19)
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where we have used the definition of ©p = hwp/kg. We now take into
account that we are only interested in the low-temperature limit, 7" < ©p.
As the integrand behaves as z? exp(—z) it disappears very rapidly and the
integral converges towards a constant. Hence, we may extend the upper limit
of the integral to infinity without making any appreciable error. Hence, we

have N 2y
a 0 zidx

= ——— (kgT)? / 2.20

u Arh2o? (ksT) o e —1"7 (52:20)

and combining this expression with Eq. (s2.17), we find

3Na2k3 ., > zldx 0
= — T . 2.21
¢ 4rh2o? /0 e — 1% (s2.:21)
Problem 3
a) The total potential is given by
Jj=+o0 j=+o0
= > Vila)= X [Vai(@) + V()] - (s3.1)
j=—o00 j=—00

where we on the right hand side sum explicitly both over the atoms at posi-
tions ja and positions ja + a/4. We may relate each of the potentials around
each atom to the one around the atom at the origin,

V(z) = FZ:OO[VO(:U —aj) + Vo(z — a/4 — aj)] . (s3.2)

j=—o0

The Fourier components of the potential is

Jj=too iq/2 )
=S / Vo(z — ja) + Vo(z — a/4 — ja)] @7k gr  (53.3)

‘]_700

where G = k(27 /a). By changing variable x — = — aj, we may rewrite this
integral

G =— [Vo(z) + Vo(z — a/4)] @r/oke gy (s3.4)
a j=—o0 —a/2—aj

B 27 Jj=+oo /+a/2—aj



E(k)

[
\
(
N

2\Vepi/a

AN
N /[

2IV2 '/al

ANV

-3pi/a  -2pi/fa  -pila 0 pi/a 2pi/a  3pila

Figure 1: Sketch of band structure.



We now note that

Jj=+o00 +a/2—aj 400
/ dx = / dzx . (s3.5)
j=—o00 —a/2—aj —0
Hence, Eq. (s3.4) becomes
~ 2 +o0 .
V=" Vo(z) + Vo(z — a/4)] er/oke gy (s3.6)
a —00

In the second factor in the integral, we make the change of variable z —
x + a/4, and as a result, Eq. (s3.6) becomes

~ 21 +00

o= %(.’L‘) [ei(27r/a)k:1: + ei(27r/a)kz+i(27r/a)k:(a/4)] ) (337)

a —0o0
This equation may be further simplified to

~ 2 +oo ] ]
Ve = _7T Vb(x)ez(%r/a)kw[l 4 eZkW/2] , (838)

a —00

which is the Fourier component in its final form. We see that for £ = 2,
exp(ikm/2) = exp(im) = —1, and Eq. (s3.8) is zero.

b) To lowest order, gap number & is proportional to 2|Vi| where G = k(27 /a)
— see Eq. (5.79) and Fig. 5.17 in Elliott. In our case, the second gap is zero,
othwerwise the figure asked for in the present problem is identical to Figs.
5.17a and b in Elliott. The result is shown in Fig. 1.

Problem 4

a) See attached sketch, Fig 2. The crucial point here is that the Fermi surface
approaches the zone boundaries at right angles.

b) The group velocity is given by
ow 1 5
’U:—_,:—V"E 841
Near the zone boundary, the gradient ﬁ,;E must be parallel to the zone
boundary, and hence, so is the direction of the group velocity.

c) See Fig. 2. The 3BZ is the area in which “P” is inscribed, and those
obtained by repeated 60° rotations.



Fermi surfacein 2BZ in Extended Zone Scheme
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Fermi surface in 2BZ in Reduced Zone Scheme

Fermi surface in 3BZ in Periodic Zone Scheme
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