Final Exam, SIF4052, Fall 2001
Solutions

Problem 1

a) The force from atom (n+1) on atom n is K (u,4+1 — uy,) from atom (n—1)
it is K(up_1 — uy). We add the two to get the total force on atom 4. Using
Newton’s 2. law, we equate this total force to the mass times acceleration of
atom n. Equation (1.1) follows.

Inserting a harmonic wave, u, x exp(ikna — iwt) in Eq. (1.1) gives
et = K (ez’ka — 14 etk _ 1) - K (eika/2 _ e—ika/2)2
= —4Ksin® (&) .

(1)
Hence,
K k
w= 45 sin (g)‘ . (2)
The group velocity is

vg:ill—(z:K gcos<%>. (3)

b) Set z = na so that u,(t) = u(z,t). Hence, Eq. (1.1) may be written
m% =K (u(z + a,t) + u(x — a) — 2u(x,t)) . (4)

At the macroscopic scale, z is essentially a continuous variable, and we may

develop u(zx,t) is a Taylor series,

ou(z,t a? %u(x,t
RPN T R,
ox 2 0%x

u(z £ a,t) =u(z,t) £
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Inserting this expression into Eq. (4) gives

Pu(x,t) ., Ou(z,?)
mam SR Ty T ©)

Comparing with Eq. (1.2) shows that ¢ = Ka?/m.

c¢) Counting the number of running waves of a chain with N atoms and with
periodic boundary conditions proceeds as follows: The allowed k values are
0, £j(27/N), where 0 < j < N and Nw/N. The distance between each
allowed k value is 27 /N. Hence, the density is N/(27). However, since there
are both positive and negative k& values, the density with respect to |k| is
N/x.

The possible k values for standing waves are jn/N, where 0 < j < N.
Hence, the density is N/m — the same result as when using running waves.

The density of states is given by

dw N
o) =" (7

Combining Egs. (2) and (3), we may write dw/k as a function of w. However,
from Eq. (2) we note that w < y/4K/m. Hence, the density of states is given
by

2N

o) = { VE TS

0 forw>\/%.

Problem 2 The reciprocal lattice consists of all vectors G such that

1K

(8)

=1, (9)

where R are the Bravais lattice vectors.

We have that . .
R =wud+vb+ wc, (10)

where u, v and w are integers. Likwise, we have that

G =k +b" +mé . (11)



As

a-a=»b"-b=c"-¢é=2mw, (12)
and the product of all other combinations of promitive vectors are zero, we
have that L

G- R =2n(ku+lv+muw). (13)
Hence, Eq. (9) is fulfilled and Egs. (2.1), (2.2) and (2.3) are primitive vectors
for reciprocal space.

b) The reciprocal of a reciprocal lattice is the Bravais lattice itself. This can
be shown by constructing
@ x b

a*=2r —=—, (14)
ar-b* x c*

and corresponding expressions for b** and &*. By construction, the same
orthogonality rules between the set {a@*, b*,c*} and {@**, b**,c**} as between
{a*,b*,c*} and {d,b,c}. Hence, {a**,b**,¢*} and {d, b, C}must be the same

set. This can also be shown by directly constructing the vectors @**, b** and

¢ — but this is somewhat messy.

c¢) A primitive cell is a an area that covers completely without overlap space
when translated through all Bravais vectors R. The Wigner-Seitz cell is the
primitive cell consisting of all points closer to a given node in the Bravais
lattice than any other node. The 1st Brillouin zone is the Wigner-Seitz cell
in reciprocal space.

Problem 3 a) The number of electrons in the conduction band is

[ dEe(E)F(B), (15)

where g(F) is the density of states and f(F) is the Fermi-Dirac distribution.
Hence, the electron density is

dFE
e(E—u)/ksT 4 1~

= (16)
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When f is small, the “plus one” in its denominator is unimportant. Hence,
we find

n = 1 (2;,:_28*)3/2 onj(E—Ec)l/Q e (E—u)/ksT

Py

= b (2 )" e B KR (T2 [0 2w

272 n?

where E = E, + kgTx. The integral is /7 /2, and we have

1 (2m. kT \*
n = Z (77’]/71-723) e(I-L*Ec)/kBT — Nce(ufEc)/kBT ] (18)

b) The relative probability that the donor is neutral is

1 + eW=Ea)/bBT  o(u=Ea)/kpT _ 1 4 9p(u—€)/kpT (19)
The factor two comes from the electron either being in a spin-up or a spin-
down state. The mean number of valence electrons on the donors is then

0-14+1-enEa/ksT 4 1. (u—Ea)/ksT
1 + 2e(w—Eaq)/ksT

Nd — Ng = (20)

Hence,
Ny

= 1+ 2¢(u—Ea)/ksT °

At T = 0, the system is in the ground state with filled donor levels and
empty conduction band. Hence,

E,; < n < E, (22)

in this case.

Charge balance dictates
n=n4g+p. (23)

When the valence band is fully occupied, p = 0, and we have that

n=ng. (24)
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Hence,
Ny

(b Eo)kpT _
Nee "1+ 2e—Eq)/ksT * (25)
Solving this equation with respect to u gives
1 8Ny 1
=FE;+kgTlog |—4/1 (Ee—Ea)/kT — —| | 26
= B kaTlog 11+ 585 q (20

At low temperatures, the term 8Ny/N.exp[(E. — E4)/kpT] dominates
and

1 N, E.—E; 1
uwe Eq+ §kBTlog [%e(Ec_Ed)/%”T] =FE;+ ch + EkBTlog [

8N,
-

(27)
Since N, oc T%/2, the last term in Eq. (27) is proportional to T'logT — 0 as
T — 0. Hence,

c

_ E.+Ey
===,

p (28)

at T =0.

c) Inserting the expression for u, Eq. (3.7) in Eq. (3.6), using n = ng, Eq.
(24), we find the sought-after result, Eq. (3.8).

d) At high temperature, it is no longer possible to ignore thermal excita-
tion of electrons in the valence band. When the majority of electrons in
the conduction band come from the valence band, i.e., when p >> ng, the
semiconductor is intrinsic. We have seen in the lectures that in the high-
temperature limit of an intrinsic semiconductor, the chemical potential ap-
proaches the halfway point between F, — the top of the valence band and
E., u— (E, + E.)/2. The number of electrons in the conduction band will
reach a plateau — the saturation range — when the donors are all ionized
but the electrons in the valence band still are not excited. In the intrinsic
range, n increases boundlessly. This is sketched in Fig. 6.53 in the texbook
by Elliott.



