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SOLUTION to Exam Dec. 16, 2008
Problem 1

a) The primitive vectors are: a=½a(-1,1,1), b=½a(1,-1,1), c=½a(1,1,-1)
The angle between vectors: a· b= -½√3a½√3a cosθ = ¼a2. 
Therefore: cosθ =-1/3 og θ = 109.5°.
The volume of the primitive cell is a3/2 (2 atoms in the FCC cell). 

     The primitive reciprocal lattice vectors for the FCC lattice:

This shows that the reciprocal lattice of the BCC structure is the FCC lattice.

b) By studying the FCC structure we find: 4  3-fold and 3  4-fold rotation axes. 
Also, 9 mirror planes may be identified.

c) The Laue condition for x-ray diffraction  where K is the scattering vector and 
Ruvw is a real space lattice vector. This means that the scattering vector K must be a reciprocal 
lattice vector.

The extinction rules (norsk: utslokkingregler) for the BCC structure may be found by noting 
that this structure may be viewed as a simple cubic structure with a basis (0,0,0) and (½,½,½). 
The structure factor (or scattering amplitude) is then:

which becomes zero for h+k+l = 2n+1 = an odd number.

d)  = the Madelung constant, 

β = constant describing the strength of the repulsive part of the potential, n = integer 
describing the range of the repulsive part of the potential

  = is a sum over atoms (repulsive part)

q = the charge on the ions (+ or -)
R = nearest neighbor separation
R0 defines the equilibrium distance, and is given by: 

The volume of the solid is given by: V = 2NR3 , where 2N = number of ions in the NaCl 
structure.
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To find the Bulk modulus we have to differentiate U with respect to the volume V twice:

The first term on the right hand side disappears at the equilibrium position R0.
Furthermore:

Where:

The Bulk modulus is then:

Contribution to the Madelung constant from one unit cell.
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Consider the central atom (e.g. Na).
Nearest neighbors (Cl) on face centers (0.5 of each atom inside cell) : 6 at distance R
Next nearest neighbors (Na) on edges (0.25 of each atom inside cell): 12 at distance
Next nearest neighbors (Cl) on corners (0.125 of each atom inside cell): 8 at distance

Therefore A = = 1.46 

(A = 1.75 if the sum is over all ions in the crystal)
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The Madelung constant

where + means ions of opposite polarity
and - means ions of same polarity

aij is the distance between ions i and j in units 
of R (nearest neighbor distance)
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Problem 2
(a) 
(i) 3D free electron density of states:

(ii) Fermi-energy:

(iii) Average electron energy at T = 0 K:

(b) Fermi wave-vector in 2D (Nc is the number of electrons in unit cell):

Fermi surface:
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Fermi wave vector kF        1st Brillouin zone                        2nd brillouin zone
                                          Fermi surface (hole-pockets)      Fermi surface (electron-pockets)

                    (Repeated zone scheme)
The Fermi surface does not extend into the 3rd Brillouin zone (2 electrons in unit cell).
The 3rd BZ is the hatched areas in the figure in problem 3.
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(c) Empty-lattice approximation in 1D.
The “empty lattice” approximation describes “free” electrons that are confined to a periodic lattice. 
The wavevector of the electron is determined moduli a reciprocal lattice vector.
The electronic band structure E(k) for a one-dimensional system of lattice spacing a is given by:

The  lowest energybands:

(d) Phonon annihilation process (two TA phonons recombine to one LA phonon):

Both crystal momentum and energy conservation laws are satisfied in this process.
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Problem 3
a) Effective electron mass is inversely proportional to the curvature of the electron band.

b) The concentration n of electrons in the conduction band of an intrinsic semiconductor at T = 
300 K, a value of the energy gap of 1.2 eV (i.e. Ec-μ=0.6 eV), and an effective electron mass 
of 50% of the mass of a free electron:

= 7.5·1014 m-3 = p

c) The position of the donor level relative to the bottom of the conduction band for the 
semiconductor as shown in the figure, when the effective mass of the electron 
me* = 0.1 me and the dielectric constant of the semiconductor ε = 10 ε0 may be found by 
using the expression for the Rydberg constant:       

  

d) The potential across the junction is caused by diffusion of electrons from the n-side to the p-
side and diffusion of holes from the p-side to the n-side. Equilibrium is established between 
the recombination currents (electrons recombinates with holes) and generating currents 
(thermal excitation of electrons to the conduction band) to prevent build up of charges.
The electric field across the depletion layer removed electrons and holes, and therefore the 
number of charge carriers is low and the resistance is high.
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