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EXAM IN COURSE TFY4220 Solid State Physics 
Monday 30. May 2011 
Time:  9.00 – 13.00 
   DRAFT OF SOLUTION 
 
 
Problem 1 (20%) Introductory Questions 
a)   
(1) Primitive unit cell: The minimum volume cell which will fill all space (without holes or 
overlap) when translated with all lattice vectors R. Contains one lattice point.  
(2) Crystal system: Bravais lattice point groups. We make a unit cell with three edges a,b,c 
and three angles α, β, γ , which will make up different crystal systems dependent on the 
restrictions on lengths a,b,c and angles α, β, γ . Examples of crystal systems are triclinic, 
monoclinic, orthorhombic… ) 
(3) Bravais lattice: A distinct lattice type /special lattice type. A special pattern of points 
which looks identical from each point.  
 
There are 7 crystal systems and 14 Bravais lattices in 3 dimensions.  
 
b) Phonon: quantum of energy of a lattice vibration; a collective excitation in a periodic, 
elastic arrangement of atoms in condensed matter. 
Optical phonon: masses oscillate with opposite phase; opposite directions.  
Acoustic phonon: masses oscillate with same phase; same directions.  
See figure 10, page 98 in Kittel.  
 
In total, with s atoms in basis, there are 3s modes, 3 acoustical and 3(s-1) optical modes. 
 
c) The free electron model can describe heat capacity, thermal conductivity, electrical 
conductivity/ resistivity and electrodynamics of metals.  And the Hall effect (but not the signs 
in the Hall constant!).  
 
d) Metal: Fermi level lies in a 
partial filled energy band.  
Insulator: An energy gap 
occurs (at T=0) between a 
filled lower band (valence 
band) and an empty higher 
band (conduction band), there 
is a gap >3 eV at the Fermi 
level.  
Semiconductor: An insulator 
with a small band gap (<3 eV). 
Thermal excitations across gap 
are possible.  
 
Electric conductivity of semiconductor and metal:  
Semiconductor: A few mobile charge carriers available at room temperature= low 
conductivity. At higher T will there be more mobile electrons/holes and conductivity 
increases.  
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Metal: Many mobile electrons available. What limits the conductivity is impurities and 
phonons. Density of phonons increases with T, more phonon-electron collisions and less 
conductivity. This also happens for semiconductors, but here the effect of more charge 
carriers will be more important than the increase phonon-electron scattering.  
 
 Problem 2 (25%) Structure and Diffraction 
 
a) Reciprocal lattice vector: * * *

hklG ha kb lc= + +
    is a vector between lattice points in the 

reciprocal lattice, given by the sum of integers (h, k, l) of primitive vectors in the reciprocal 
lattice vectors (a*, b*, c*). The vector is normal to the lattice plane (hkl). 
 
We will show that ' hklk k G− =

  
has to be valid for constructive interference.  

k


 and 'k


 are the incoming and the scattered k-vector, respectively, for the X-ray scattering.  
2'k k k π
λ

= = =
 

 . We look at scattering from two lattice points with a distance R


 and look 

at the path difference:  
 

Difference in path (from figure): 
' ' 1( ' ) ( ' )

2
k kR R R k k R k k
k k k

λ
π

⋅ − ⋅ = − ⋅ = − ⋅
 

      
  

This has to be an integer number of λ if constructive 
interference. The equation over is valid for all R.  
 

 

( ' )
2

R k k nλ λ
π

− ⋅ =
 

,  ( ' ) 2R k k nπ− =
 

 this gives that ( ' ) 1iR k ke − =
 

. For this to be valid, 

( ' ) hklk k G− =
  

 has ti be valid for all R


.  This was what should be shown. QED. 
 
b) The angle between k


 and 'k


 is 2θ . For a cubic crystal we have 

2* * *a b c
a
π

= = =
   which gives  2 2 2( ' ) hklk k G h k l

a a a
π π π

− = = + +
  

 

Square both sides give: ( )
2

2 2 2 2 22( ) 2 ' cos 2 ( ') ( )k k k k h k l
a
πθ  − + = + + 

 

   
 

( )
2

2 2 2 222 1 2cos 2 ( )k h k l
a
πθ  − = + +      

 

2 2
2 2 2 22 22 1 1 2sin ( )h k l

a
π πθ
λ

    − + = + +       
 

2 2 2
2

2 2

4 sin h k l
a

θ
λ

+ +
⋅ =  

 
2

2 2 2 2
2

4 sina h k lθ
λ

⋅ = + +  

 or 
2

2 2 2 2sin ( )
2

h k l
a
λθ  = + + 

 
 

R
k

k’

k’

k

R
k

k’

k’

k
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You will get full pot if you derive 2sin θ  from Braggs law, starting from 2 sind nθ λ= , 
introducing expression for d, and square this (and obtain the same result!) .   
 
c) This is what we did in the X-ray lab. We have to find the (hkl) values corresponding to the 
5 lines. This can be solved in two ways:  
 
1) Look at the lowest difference in 2sin θ  from above and from this find the 2 2 2h k l+ +  (Ni) 
in the equation above.  

2 2
2 2 2 2sin ( )

2 2 ih k l N
a a
λ λθ

    = + + =     
     

 

 
line 2sin θ  2 2

1sin sini iθ θ− −  Ni N hkl 
1 0.0433 0.0147 2.99 3 111 
2 0.0580 0.0593 4 4 200 
3 0.1173 0.0438 8.09 8 220 
4 0.1611 0.0145 11.11 11 311 
5 0.1756  12.11 12 222 
 
2) We can assume bcc or fcc and do a test and trial:  
bcc fcc
hkl h2+k2+l2 a2 a hkl h2+k2+l2 a2 a

110 2 27,4568591 5,239929 111 3 41,18529 6,417577
200 4 40,995931 6,402806 200 4 40,99593 6,402806
211 6 30,4061893 5,514181 220 8 40,54159 6,367227
220 8 29,5191061 5,433149 311 11 40,58877 6,370932
310 10 33,8519932 5,818247 222 12 40,62239 6,37357  

 
 
In both cases we find that the reflections (with intensities) are 111, 200, 220, 311 and 222, 
corresponding to none reflections (extinctions) with mixed indices, and therefore a fcc 
structure, and that the lattice parameter is 6.37 Å.  
 
d) This is a cubic primitive (P) cell with a basis of A in (000)  
and B in ( ½  ½ ½ ); corresponds to the CsCl structure  
(grey is A and red is B).  
One AB molecule per Bravais lattice point
 
This structure (P) will not give any extinctions:  

We have 
2 ( )2 ( ) 2 2 2hkl j j j j

h k liiG r i hx ky lz
G hkl j j A B

j j
S F f e f e f f e

ππ − + +− ⋅ − + += = = ⋅ = + ⋅∑ ∑
 

 

 
Above Tc (statistically disorder on the atom positions) each lattice point will statistically have 
½ A and ½ B and the two ‘atoms’ in the basis will be identical. We will have a base centred 
cubic (bcc) structure and observe extinctions as for the bcc:  

2 ( )
2 2 2

1 1( )  for h+k+l=even1 1( ) ( ) 1 2 2
2 2 0           for h+k+l=odd

hkl j

h k liiG r A B
j A B

j

f f
F hkl f e f f e

π− + +− ⋅   +
= = + + = 

 
∑

 
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That means; extinctions if sum of hkl is an even integer.  
 
 
Problem 3 (25%)  Phonons 
a) This derivation is done in Kittel pages 97-99 and also in the lecture. I therefore show it very 
brief here.  
 
We put up the force on the atom, assuming only nearest neighbour interaction, and then 
Newton’s second law for each of the two masses in the basis.  
 

1( ) ( )m n n n nF K v u K v u−= − + −  and 1( ) ( )M n n n nF K u v K u v+= − + − . With Newtons 2. law, we 
get the two coupled differential equations 

2

12 ( 2 )n
n n n

vm K u u v
t +

∂
= + −

∂
 and  

2

12 ( 2 )n
n n n

uM K v v u
t −

∂
= + −

∂
 

Then we use  the solutions ( )i nka t
n e ω−= ⋅u u og ( )i nka t

n e ω−= ⋅v v  and get  
 

2

2

2 (1 )
0

(1 ) 2

ika

ika

uK m K e
vK e K M

ω
ω

− − − +  
⋅ =   − + −   

 

 
The determinant has to be zero, which gives the equation  

2 2 2(2 )(2 ) (1 )(1 ) 0ika ikaK m K M K e eω ω −− − − + + =  
2 2 2 4 24 2 2 (1 )(1 ) 0ika ikaK Km KM mM K e eω ω ω −− − + − + + =  

This is a second order equation in ω2,  
2 4

2
b b acx

a
− ± −

= , 
2

2 ( )
2 (1 cos )

a mM
b K m M
c K ka

=
= − +

= +

 

2 2 2
2 2 ( ) 4 ( ) 4 2 (1 cos )

2
K m M K m M mM K ka

mM
ω

+ ± + − +
=  

…………. 
and gives the dispersion relationship 
 

( )
2 2

2
( ) 41 1 sin

2
K m M mM ka

mM m M
ω

 +  = ± − ⋅
+  

          (*)  

as we were supposed to show.  
 
NB! In the exercise the root stopped before the sin… I hope all got the message about 
this correction!  
 
b) When k→0 we get  
 

 

2

2

1 12 ( ) optical branch

1 1( )  acoustical branch
2

K
m M

ka K
M m

ω

 += 

 +
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On the BZ we have k
a
π

=  and this gives, when inserted into (*) ; 

…………………….. 
 
 
 
Which is corresponding to acoustical and optical depends on which mass is 
heaviest.  
 

 
Group velocity for long wavelengths: 

0gv
k

δω
δ

= =  for optical branch 

 

2( )g
Kv a

k m M
δω
δ

= =
+

 for k→0 acoustic branch.. 

 
If the material is exposed to waves with ω1, the wave will be damped very quickly; no 
propagation.  
 
c) When M = m the forbidden gap disappears. We are back to the result for the monoatomic 
lattice; the two branches will be one folded into the 1 Brilluin zone (1BZ). The acoustic 

velocity is 
2
a K

m
, the same as for the monoatomic lattice with lattice constant a/2, as 

expected. The dispersion relation becomes as for the monoatomic chain:  
2 24 sin

4
K ka

m
ω =   figure! 

 
d) We can measure the sound velocity in ionic materials by sending in IR light and look at the 
resonance curve. We did in the lattice vibration lab for SiC. …. 
         figure!  
 
 
 
Problem 4 (30%) Free-electron model, energy bands and semiconductors 
 
a) Free electron model: Assume conduction electrons are a free electron gas. No interaction 
with ions or lattice, or interaction between conduction electrons. Charged particles; follow the 

Pauli principle. 
2

2( )
2

E k k
m

=
 . The Fermi energy is the highest occupied energy, 

corresponding to the Fermi energy wave vector kF, corresponding to a sphere in 3D. The 
number of states inside the sphere with radius kF is N. The volume in k-space which is 
occupied by one state is given so that the size of the material is L*L*L=L3 =V in real space; 

which is 3

2
L
π 

 
 

. There is one allowed wave vector for each 3

2
L
π 

 
 

 this will then give:  

2

2  

2  

K
m
K

M

ω


= 


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3
3

3 2

4
32

32

F
F

k k VN

L

π

ππ
= =

 
 
 

 which gives 
1

2 33
F

Nk
V
π 

=  
 

. 

 

This gives the Fermi energy 
2

2 2 33
2F

NE
m V

π 
=  

 

 .  

From this expression we can now find the number of states less than E, given by N(E): 
 

 
2

2 2 33 ( )
2F

N EE
m V

π 
=  

 

  gives   
3

2

2 2

2( )
3
V E mN E
π

 =  
 

 

 

Then we can find 
3 31 12 2

2 2
2 2 2 2

2 3 2( )
3 2 2

dN V m V mD E E E
dE π π

   = = ⋅ =   
    

 

This gives 
3

2

2 2

2
2
V mC
π

 =  
 

 

 
 
b) Empty lattice 
approximation; the 
parabola for free electrons 
are made above each 
reciprocal lattice point, as 
shown in figure (b) under, 
the ‘bands’ can be 
numbered from where they 
cross the BZ boundaries.    
…. 
 
The figure shows the three 
different schemes used:  
(a) extended zone scheme  
(b) periodical zone scheme  
(c) reduced zone scheme  
 
All three descriptions are fully equivalent. 
 
 
c) In words: We start with the Schrödinger equation; use a potential in this which is periodic 
with the lattice and also a sum of Bloch functions as the wave function. Bloch functions are 
plane waves multiplied with a function with period as the lattice. When the periodic potential 
and the Bloch functions are put into the S-equation, (both as Fourier sums) we get the Central 
equation -coupled set of equations. Everything happens in the 1BZ, energy band, 2N states in 
each band, we get an electronic band structure; forbidden energies, Bragg scattering is the 
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reason Standing waves on BZ boarder; the same k gives different energies. The energy gap is 
proportional to the first Fourier component of the potential.  
 
Mathematically  (from lectures)  (I don’t expect all this!!!)   
 

 
 
 
d)  
Intrinsic: undoped, no states in band.  
Extrinsic: doped, energy level of impurity states in band gap 
p-doping: empty states near the top of the valence band 
n-doping: filled electron states near the bottom of the conduction band 
Explained in Kittel page 209-213.  
 
Effective mass of electron or hole reflects that the properties of semiconductors also depend 
on band structure near the gap, not only on the gap. The electron in a periodic potential will 
be accelerated relative to the lattice as if it has another mass. It is inversely proportional to the 
curvature of the energy band. In general a tensor. ….. Explained in lecture and Kittel page 
200-201.  
 
e)  
Expression for the density of states D(E) with the lowest energy conduction band equal to Ec:  

( )
3

12
2

2 2

2( )
2 C
V mD E E E
π

 = − 
 

 (this can be taken from problem 4 a) .  

 

We can do this ( )/
( )/

1f ( )
1

B

B

E k T
E k TE e

e
µ

µ
− −

−= ≈
+

 because the band gap in semiconductors  (~1 

eV) is usually much larger than kBT  and therefore ( ) BE k Tµ− >> . 
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Concentration n of electrons in the conduction band: 

( )
3

12
( )/ 2

2 2

1 2( ) ( )
2

B

C C

E k T
C

E E

N V mn f E D E dE e E E dE
V V

µ

π

∞ ∞
− −  = ⋅ = ⋅ − 

 ∫ ∫ 
 

 

( )
3

12
/ 2

2 2

1 2
2

B B

C

k T E k T
C

E

mn e e E E dE
µ

π

∞
− = ⋅ − 

  ∫
 

 
This was done in the lectures and in Kittel on page 206.  
 

We have to use the integral 
1
2

0 2
uu e du π∞

− =∫  (This is the Gammafunction of 3/2) 

(http://no.wikipedia.org/wiki/Gammafunksjonen)    and can be found in Rottmann. 
 
The answer becomes:  

3 ( )2

22
2

C

B

E
k TBmk Tn e
µ

π

−
 =  
 

 

http://no.wikipedia.org/wiki/Gammafunksjonen�
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