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Draft of solution Exam TFY4220, Solid State Physics, 29. May 2015.  

Problem 1 (15%) Introductory questions (answers can be found in the books) 

 1a) Small Ewald sphere, not many reflections in Bragg with a single crystal. Make powder or rotate to 

get more reflections ..  See lab text 

1b) Properties of materials were asked for – not properties of bonds!   
Ionic – high melting point, solves in water, non-conductive, Ex NaCl 
Metallic- medium melting points, conductors, dense, ductile, Ex Al 
Covalent –brittle, directional bonds, (no/semi/ conductors, medium/high melting points,  Ex Si 
 
 
1c) Given in lectures (and in book)   

 

 

 

 

 

 

1d) Free electrons  - See lecture notes/Kittel 

Problem 2 (15%) Multiple Choice 

1 a) 

2 b)  

3 d) 

4 c) 

5 c)  

6 c)  

7 d) 

8 b)  

9  b) 

10 b) 
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The temperature dependence of the electron concentration in an n-type

semiconductor.
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Problem 3 (25%) Structure and Diffraction 

3a)  

I) Ag is fcc Bravais lattice with one atom in basis.  (The fcc Bravais lattice has these 4 lattice points in the 

unit cell –Ag in  (000), ( ½ , 0, ½) (0, ½ , ½) and ( ½ , ½ , 0)).  

II) Perovskite has a simple cubic Bravais lattice – 5 atoms in basis – Ca in  (0,0,0), Ti in (½,½,½,) and O on 

the three cube faces  (½,½,0,)(½,0,½,)(0,½,½,) one lattice point in unit cell 

III) Titanaluminid is tetragonal, primitive, with 4 atoms in basis – Ti in 000 and ½ ½ 0, Al in ½ 0 ½ and 0 ½ 

½ .. One lattice point in unit cell.. 

2b) fcc is extinct when mixed indices, all odd or all even gives 4f. See Kittel page 40. The three lowest are 

111, 200 and 220, in this order ..  (lowest h2+k2+l2 give highest intensity) 

3c) 

 Extinct reflections between everyone 100, 110 etc …  

3d) Perovskite – CaTiO3- ,one Ca, one Ti and three O in the unit cell-  

Simple cubic – no extinction rules, that means all can be seen, but they will show different strengths, 

depending on type of atoms .. ..  

 

Problem 4 (25%) Phonons 

3a) This was given in lecture, and in the book, I just give some keywords here .. – Start out with 

equations of motion (M instead of m, ϒ instead of C) ,  

insert suggested answer  

And we get  

 

solve with respect to ω and we get 
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                                                                                                      which is the dispersion relation for one 

dimensional chain of one type of equidistance atoms.  (With values here   2 sin
2

C ka
k

m
   ) 

4b) 

When we plot this we get 

 

All physics within 1BZ. Changing k by one reciprocal lattice vector gives exactly the same movement of 

the atoms, as shown in figure below. 

  Remember that the wave is 

defined by the lattice points! 

We have one branch, acoustical modes. At zone centre acoustic down to zero…  Standing waves at zone 

boundary, group velocity                             is zero.  

 

c) We have that   max2 sin sin
2 2

C ka ka
k

m
     . For 1D we have 

2
k

L
N


 and 

( ) 2 kN d N dk   . This gives (solving with respect to k) 
max

2
( ) arcsink

a






 
  

 
.The number 2 is 

there because we have an interval dk with frequencies between ω and dω both for positive and negative 
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k values in the first Brilluin zone. The number of wave solutions with frequencies between ω1 and ω2 will 

then be 
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  

 
 

We have used that  arcsin x x for small x.  

4d) If we have two atoms per unit cell, we do the same – more 

complicated equations, twice as long unit cell in real space – half in 

reciprocal space..  we will get 2 solutions per k -  acoustic and optical 

branch. See book/lecture.  

 

 

 

4e) In the figure; dispersion relation for phonons in 3D,  different directions in the reciprocal space. Two 

type of branches, optical and acoustical, LA and TA modes – with s atoms per primitive unit cell (in basis) 

we have 3s dispersion curves,  3 acoustical and 3s-3 optical – here the two transversal modes are 

degenerated and we have 2 atoms in the primitive unit cell (basis).. GaAs is cubic with two atoms in 

basis..   

 

Problem 5 (20%)  Free-electron model  
 

5a)  Assume conduction electrons are a free electron gas. No interaction with ions or lattice, or 

interaction between conduction electrons. Charged particles; follow the Pauli principle 
2

2( )
2

E k k
m

 . 

The Fermi energy is the highest occupied energy, corresponding to the Fermi energy wave vector Fk , 

corresponding to a sphere in 3D. The number of states inside the sphere with radius Fk  is N. The 

volume in k-space which is occupied by one state is given so that the size of the material is 
3V L  in 

real space; which is  

3
2

L

 
 
 

. There is one allowed wave vector for each 

3
2

L

 
 
 

  this will then give:   

http://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.quora.com/Whats-the-difference-between-optical-and-acoustic-phonons&ei=YsKCVarXO4qZsgH7_oboBg&bvm=bv.96041959,d.bGg&psig=AFQjCNElrHWzBOva2dGh626UqaipZSgk6w&ust=1434719200177852
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 which gives 

1
2 33

F

N
k

V

 
  
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 as should be shown.   This gives the Fermi energy 

2
2 2 33

2
F

N
E

m V

 
  

 
 .   From this expression we can now find the number of states less than E, given 

by N(E): 

2
2 2 33 ( )

2
F

N E
E

m V

 
  

 
 

gives    

3
2

2 2

2
( )

3

V E m
N E



 
  

 
 Then we can find   

 

3 3
1 12 2
2 2

2 2 2 2

2 3 2
( )

3 2 2

dN V m V m
D E E E

dE  

   
      

   
 

5b) Number of occupied states is given by ( )D E   multiplied with the probability that the state is 

occupied, which is given by the Fermi-Dirac distribution
( )/

1
( )

1BE k T
f E

e





.  When T>0 we get 

excitation from area 1 in the figure to area 2, the extension of this areas is typically Bk T  as shown in the 

figure.  
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At zero temperature, the energy = divides the occupied levels from the empty ones. Therefore, (T =0) is 

Fermi energy. (see also fig 5 chapter 6 in Kittel or Figure 57 in Hemmer). According to these figures, only 

those electrons in orbitals within an energy roughly  Bk T  are excited thermally. The energy gain for 

such an excited electron is of magnitude Bk T . The number of electrons that would be excited is 

estimated by 
3

( )
2

F B

F

N
D E E k T

E
      

5c) Si and GaAs are quite similar – we see inside each part a curve looking similar to parabolas.. Both 

have bandgap around the Fermi energy (E=0 in the curves), between 1-2 eV; both are semiconductors. 

We see that Si is an indirect bandgap semiconductor and that GaAs is a direct bandgap semiconductor.  


