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Draft of solution Exam TFY4220, Solid State Physics, 28. May 2016.  

Problem 1 (20%) Introductory questions  

(full answers can be found in the books and lecture notes, here just a few keywords.. ) 

 1a) Lennard-Jones; Attractive from Coulomb and repulsive from Pauli principle..  

 

 

1b) Plot E(k) – some energies are forbidden, Electron Bragg scattering at zone boundaries, standing 
waves.. Fermi surface defined for metals. Surface in k-space with constant energy EF. Chemical potential 
or Fermi level  
 
1c) Fermi energy= the energy of the highest occupied single particle state at zero temperature (empty 

for higher energies and full for lower)  

Fermi level (the chemical potential) = the thermodynamic work required to add one electron to the 

system, -the energy level of an electron, such that at thermodynamic equilibrium this energy level would 

have a 50% probability of being occupied at any 

given time (from Fermi-Dirac statistics), depends 

on temperature.  At zero temperature, the energy 

E   divides the occupied levels from the 

empty ones. Therefore, ( 0)T   is the Fermi 

energy.  Fermi energy well defined for metals, 

Fermi level much more general, we use it in 

semiconductors.  

1d) effective electron mass is inversely 

proportional to the curvature of the electron band. We include the effect of the periodic potential into 

the mass of the electron so that we still can use the free electron model.. mass is not changed, but the 

electron behave as if the mass is changed.. ) See book.  
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Problem 2 (15%) Multiple Choices 

1 c) 

2 b)  

3 d) 

4 a) 

5 d)  

6 c)  

7 b) 

8 a)  

9  a) 

10 b) 

Problem 3 (25%) Structure and Diffraction 

3a) For the (311) face, the intercept on the a1 axis is 1/3 what it is 

on the a2 and a3 axes, because the Miller Index is the inverse of the 

intercepts. See figure. For a cubic material, the [311] direction will 

be normal to the (311) plane.   

Calculation of distance between planes in a cubic crystal is done in 

exercise 4c)  (can also be done in other ways, and also with (hkl) = 

(311)) 
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In this case, with (hkl) equal (311) we have  𝑑311 =
𝑎

√32+12+12
=

𝑎

√11
 

 

3b) We should find the packing fraction of Si (diamond structure). We have two atoms in basis in a fcc 

structure, which give 8 atoms in the unit cell.  Along the body diagonal there are 4 spheres with radius r, 

making 8𝑟 = √3   which make the packing fraction equal  
𝑉𝑎𝑡𝑜𝑚𝑠

𝑉𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
=  

8∙(4𝜋 3)⁄ 𝑟3

𝑎3 =
√3

16
≈ 0.34

 

First and second nearest neighbors; The atoms in the diamond structure have 4 nearest neighbors and 

12 second nearest neighbors.  

3c) NaCl Bravais lattice is fcc with two atoms (ions) in the basis; they are Cl- in (000) and Na+ in (½ ½ ½ )  

3d) Two atoms in basis – in this case Cl in (000) and Na in (½ , ½,  ½). This group repeats in all four 

Bravais lattice points (0,0,0), ( ½ ½ 0), ( 0 ½ ½ ) and ( ½ 0 ½ )  

 exp jhklG hkl j

j

S F f iG r     We have 8 atoms – Cl in (0,0,0), ( ½ ½ 0), ( 0 ½ ½ ) and ( ½ 0 ½ ) and 

Na in (½,½,½), ( 0 0 ½), (½ 0 0 ) and ( 0 ½ 0 ) This gives 
( ) ( ) ( ) ( ) ( ) ( ) ( )(1 ) ( )i h k i k l i h l i h k l i k i h i l

hkl Cl NaF f e e e f e e e e                   Can be simplified to  

( ) ( ) ( ) ( )( )(1 )i h k l i h k i k l i h l

hkl Cl NaF f f e e e e             

This gives  

4( )hkl Cl NaF f f  , hkl are all even (strong) 

4( )hkl Cl NaF f f   , for hkl all odd (weak) 

0hklF   hkl mixed (no reflection) 
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3e) We see more reflections in KBr than in KCl. We see that the weak reflections from d) are extinct in 

KCl. The reason for this is that the atomic  form factor for K+ and Cl- are very similar.  They are atom 

number 17 and 19, and as ions they have the same number of electrons. Between K+ and Br- there is a 

difference of 8 electrons, and the atomic form factors will be different, contributing to some intensity in 

the weak reflections (which are the difference between the form factors)  

3f) We can read out the scattering angle to be about 46,3 degrees. Using Braggs law for the (311) 

reflection, and the formula for distance between planes found in a), we can find the wave length to be:  

2𝑑 sin 𝜃 = 𝑛𝜆 

𝜆 = 2 ∙ 6,598Å
√11

⁄ ∙ sin(23,1) = 1.55Å 

Looks very reasonable..  

Problem 4 (20%) Phonons 

4a) wave vector k is the horizontal axis. Dispersion relation shows frequency as function of k 

vector -) The figure shows the dispersion relation for phonons in 3D, different directions in the 

reciprocal space. Two type of branches, optical and acoustical, LA and TA modes – In 3D and a with s 

atoms per primitive unit cell (in basis) we have 3s dispersion curves, 3 acoustical and 3s-3 optical – here 

the two transversal modes are degenerated in some directions.  We have 2 atoms in the primitive unit 

cell (basis). .  (In fact, the material is Silicon – not asked for  ) 

The acoustic waves are the ones going to zero when k goes to zero. Typically, longitudinal (compressive) 

waves travel faster in materials than transversal (shear) waves do, we therefore know that the lowest 

branch is the TA and the very highest is the LO branch. TA, LA, TO and LO are marked in the figure under. 

The wave vector k varies from zero at the Γ point, and increases along the different directions according 

to the figure to the right (in the exercise). The X point corresponds to the [100] direction.   

.  
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b) The density of states is the projection of states down to the c) We make a straight line from k=0, see 

red line in figure above, the slope will correspond to the speed of sound. The symmetry point X 

corresponds to (0, 0, 2π/a), which gives a length of k-vector from Γ to X equal (2π /5.43) Å-1.   Speed of 

sound (Debye model) then given by    

TA: 
  12 10 110 10 Hz 2 / (2 (5.43 10 m) ) 5400m/ sT

d k
v

dk


           

LA: 
  12 10 115 10 Hz 2 / (2 (5.43 10 m) ) 8150m/sL

d k
v

dk


           

The tabulated values are 5840 m/s  and 8430 m/s. 

4c) To find the density of states for phonons, we project the dispersion relation down on the frequency 

axis, thinking of a quasi-continued dispersion relation. It will be like the one under, where the DOS for 

the two models are drawn in. The Debye model assumes a linear dispersion relation, which will give a 

parabola as a function of frequency (works best for low frequencies and low temperatures). The Einstein 

model assumes that all phonons have the same frequency, and will give a ~delta function (works best 

for optical modes).   

 

 

d) Umklapp prosesses – See Kittel and lecture notes (phonon-phonon scattering  where total 

momentum is not conserved.. k-vector into another Brillouin zone, adds lattice vector G) – Umklapp 

processes – anharmonic effects, limit thermal conductivity – increase thermal resistivity..  
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Problem 5 (20%)  Electrons – and semiconductors  
 

5a)  We assume the conduction electrons are a free electron gas. No interaction with ions or lattice, or 

interaction between conduction electrons. Charged particles; follow the Pauli principle 
2

2( )
2

E k k
m

 . 

The Fermi energy is the highest occupied energy, corresponding to the Fermi energy wave vector Fk , 

corresponding to a sphere in 3D. The number of states inside the sphere with radius Fk  is N. The 

volume in k-space which is occupied by one state is given so that the size of the material is 
3V L  in 

real space; and is  

3
2

L

 
 
 

. There is one allowed wave vector for each 

3
2

L

 
 
 

. This will then give:   

3
3

3 2

4

32
32

F
F

k
k V

N

L




 

 
 
 

 which gives 

1
2 33

F

N
k

V

 
  
 

 as should be shown.   This gives the Fermi energy 

2
2 2 33

2
F

N
E

m V

 
  

 
 .   From this expression we can now find the number of states less than E, given 

by N(E):  

2
2 2 33 ( )

2
F

N E
E

m V

 
  

 
 

gives    

3
2

2 2

2
( )

3

V E m
N E



 
  

 
 Then we can find   

 

3 3
1 12 2
2 2

2 2 2 2

2 3 2
( )

3 2 2

dN V m V m
D E E E

dE  

   
      

   
. We see that 

3
2

2 2

2

2

V m
C



 
  

 
 

5b)  
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We assume an empty conduction band and a filled valence band.  

Assuming the free electron model we have for the valence band 
2

2

2
V

h

E E k
m

  and for the 

conduction band 
2

2

2
C

e

E E k
m

   The masses are the effective masses.. 

Expression for the density of states Dc(E) in the conduction band is then (using results from a));  

 
3

12

2
2 2

2
( )

2

e
c C

mV
D E E E



 
  

 
.  

We can do this 
( )/

( )/

1
( )

1
B

B

E k T

e E k T
f E e

e





 


 


 because the band gap in semiconductors  (~1 eV) is 

usually much larger than kBT  and therefore ( ) BE k T  . 

 

Concentration n of electrons in the conduction band: 

 
3

12
( )/

2
2 2

1 2
( ) ( )

2
B

C C

E k T

e C

E E

N V m
n f E D E dE e E E dE

V V





 

   
     

 
   

 

 
3

12
/

2
2 2

1 2

2
B B

C

k T E k T

C

E

m
n e e E E dE







 
   

 
  

This was done in the lectures and in Kittel on page 206.  We have to use the integral 
1

2

0
2

uu e du




    



8 
 

The answer becomes:  

3 ( )
2

2
2

2

C

B

E

k Te Bm k T
n e







 
  

 


In the same way we can find p to be equal to

3 ( )2

2
2

2

V

B

E

p B k T
m k T

p e






 

  
 

.    

When we calculate the product pn,  will disappear, and with g C VE E E   we get the given formula - 

   
3

3
/

2
2

4
2

g BE k TB
e h

k T
np m m e



 
  

 
, this shows the T dependence of the charge density concentration.  

We can then calculate the chemical potential for the intrinisic semiconductor, by using the fact that n=p, 

and get : 

  

5d) We introduce atoms with more electrons. That means, we will get a donor level inside the band gap, 

where electrons will very easily (at room temperature) be thermally excited to the conduction band. We 

will therefore have many more electrons in the conduction band. We will have an extrinsic, n-type 

semiconductor. n (concentration of charge carriers in the conduction band) will increase, the energy 

bands will move relative to the Fermi level (or chemical potential). The band gap of the original material 

will not change much, as the donor level is so close to the conduction band (P in Silicon is about 0.04? eV 

compared to the bandgap of 1.1 eV).  

To change the band gap in a semiconductor we can alloy the system (add some Aluminium to GaAs for 

example). You can also add nanoparticles, or make quantum dots/2D/3D structures..   

 

 

 

 

  


