Solutions, Exam TFY4220 Solid state physics spring 2021

Task 1 CsCl

Version 1: What are the constituents of the *basis* of the CsCl structure? Answer: 1 Cs+, 1 Cl- ion.

Version 2: What is the *crystal structure* for the CsCl structure? Answer: Simple cubic

Version 3: What is *the average form factor of the basis* of the CsCl structure? Answer: $0.5(f_{Cs} + f_{Cl})$

Task 2 Lattice spacing

Version 1: A diffraction signal is measured at a scattering angle $2\theta = \frac{4.32}{4.32}^\circ$ using X-ray radiation with a wavelength of $\frac{1.542}{1.542}$ Å. What is the corresponding lattice spacing d? $n\lambda = 2d \sin \theta$

 $d = \frac{\lambda}{2\sin\theta}$ 1.542/2/sind(4.32/2) = 20.8913, <u>20.5 Å</u>

Version 2:

A diffraction signal is measured at a scattering angle $2\theta = \frac{4.32}{2000}^{\circ}$ using X-ray radiation with a wavelength of $\frac{1.566}{1.566}$ Å. What is the corresponding lattice spacing d? $n\lambda = 2d \sin \theta$ $1.566/2/\sin d(4.32/2) = 20.8 \text{ Å}$

Version 3:

A diffraction signal is measured at a scattering angle $2\theta = \frac{43.2}{\text{ scale}}$ ° using X-ray radiation with a wavelength of $\frac{1.542}{1.542}$ Å. What is the corresponding lattice spacing *d*? 1.542/2/sind(43.2/2) = 2.0944, 2.09Å

Version 4:

A diffraction signal is measured at a scattering angle $2\theta = \frac{43.2}{9}$ ° using X-ray radiation with a wavelength of $\frac{1.665}{\text{Å}}$ Å. What is the corresponding lattice spacing *d*? $1.665/2/\sin(43.2/2) = 2.2615$, 2.26\AA

Task 3 Omega_max

Version 1

Consider the 1d monatomic chain in the harmonic lattice model as described in the lectures. Given that the mass M = 32 u and the force constant $\gamma = 1.0$ N/m. What is the maximum frequency ω that can propagate in the lattice?

Solution: $\sqrt{(4\gamma/M)} = \omega_{\text{max}}$ $M = 32 \cdot 1.66\text{e}{-}27 \text{ kg}$ $\omega_{\text{max}} = 2\sqrt{(\gamma/M)} = 8.67 \text{ e}{12}$ Answer: <u>8.7 THz.</u>

Version 2

Consider the 1d monatomic chain in the harmonic lattice model as described in the lectures. Given that the mass $M = \frac{42}{42} u$ and the force constant $\gamma = 1.0$ N/m. What is the highest frequency ω that can propagate in the lattice?

Solution: $\sqrt{(4\gamma/M)} = \omega_{\text{max}}$ $M = 42 \cdot 1.66\text{e}{-}27 \text{ kg}$ $\omega_{\text{max}} = 2\sqrt{(\gamma/M)} = 7.57 \text{ e}{12}$ Answer: <u>7.6 THz.</u>

Task 4 Fermi energy

Kittel eq. 8.37:
$$D(E) = \frac{8\pi\sqrt{2}m_e^{*3/2}}{h^3}\sqrt{E-E_c}$$

Version 1:

Assume a semiconductor piece measuring $10 \times 100 \times 100 \text{ nm}^3$. The effective electron mass is 1.12 m_e . What is the number of states 0.1 eV above the conduction band edge?

meff = 1.12 * 9.11e-31% kg.sqrtE_Ec = sqrt(0.1 * 1.6e-19)% sqrt(J)h = 6.626e-34% Js

 $D = 8 * pi * sqrt(2) * meff^{(3/2)} * sqrtE_Ec / h^3 \% = 1.59e46 m^{-3} J^{-1}$

Number of states per unit energy: 1.59e46 * 10e-9*100e-9*100e-9 = 1.59e24 J⁻¹ = $2.54e5 \text{ eV}^{-1}$

Version 2:

Assume a semiconductor piece measuring $10 \times 100 \times 100 \text{ nm}^3$. The effective electron mass is 1.12 m_e . What is the number of states 0.2 eV above the conduction band edge?

 $\begin{array}{ll} meff = 1.12 * 9.11e{-}31 & \% \ kg. \\ sqrtE_Ec = sqrt(0.2 * 1.6e{-}19) & \% \ sqrt(J) \\ h = 6.626e{-}34 & \% \ Js \\ D = 8 * pi * sqrt(2) * meff^{(3/2)} * sqrtE_Ec / h^3 & \% = 2.25e46 \ m^{-3} \ J^{-1} \\ \end{array}$

Number of states per unit energy: 2.25e46 * 10e-9*100e-9 = 2.25e24 $J^{-1} = 3.60e5 \text{ eV}^{-1}$

Version 3: Assume a semiconductor piece measuring $10 \times 10 \times 100 \text{ nm}^3$. The effective electron mass is 1.04 m_e. What is the number of states 0.1 eV above the conduction band edge?

meff = 1.04 * 9.11e-31% kg.sqrtE_Ec = sqrt(0.1 * 1.6e-19)% sqrt(J)h = 6.626e-34% Js

 $D = 8 * pi * sqrt(2) * meff^{(3/2)} * sqrtE_Ec / h^3 % = 1.43e46 m^{-3} J^{-1}$ Number of states per unit energy:

 $1.43e46 * 10e-9*10e-9*100e-9 = 1.43e23 \text{ J}^{-1} = 2.28e4 \text{ eV}^{-1}$

Task 5. Fermi wave vector

Kittel eq. 6.16:
$$k_F = \left(\frac{3\pi^2 N}{V}\right)^{1/3}$$

Version 1:

Consider a BCC material with one conduction electron per primitive cell, in the free electron Fermi gas model. The lattice parameter a = 4.2 Å.

What is the magnitude of the Fermi wave vector?

$$\begin{split} N &= 2 \\ a &= 4.2e\text{-}10 \\ V &= a^3 \\ kF &= (3^*\text{pi}^2*\text{N/V})^{(1/3)} \\ \% &= 9.28e9 \text{ m}^{-1} = 0.93 \text{ \AA}^{-1} \end{split}$$

Version 2:

Consider an FCC material with one conduction electron per primitive cell, in the free electron Fermi gas model. The lattice parameter a = 4.2 Å.

What is the magnitude of the Fermi wave vector? N = 4 a = 4.2e-10 $V = a^{3}$ $kF = (3*pi^{2}N/V)^{(1/3)}$ % = 1.169e10 m⁻¹ = 1.17 Å⁻¹

Version 3:

Consider a BCC material with one conduction electron per primitive cell, in the free electron Fermi gas model. The lattice parameter $a = \frac{5.2}{4}$ Å.

What is the magnitude of the Fermi wave vector? N = 2 a = 5.2e-10 $V = a^{3}$ $kF = (3*pi^{2}N/V)^{(1/3)}$ % = 7.495e9 m⁻¹ = 0.75 Å⁻¹

Task 6 Lattice plane atomic density

Version 1:

A material with a bcc unit cell and one atom per Bravais point has a lattice constant of 0.288 nm.

What is the number density of atoms in the (110) plane?

N = 2 % atoms per rectangle a = 0.288e-6 % mm b = sqrt(2)*arho = N/(a*b) % <u>= 17e12 mm⁻²</u>

Version 2:

A material with a bcc unit cell and one atom per Bravais point has a lattice constant of 0.228 nm. What is the number density of atoms in the (110) plane?

N = 2 % atoms per rectangle a = 0.228e-6 % mm b = sqrt(2)*arho = N/(a*b) % <u>= 27e12 mm⁻²</u>

Task 7 Volume of reciprocal unit cell

Version 1:

Assuming that the primitive translation vectors of a lattice are given by

 $\mathbf{a} = \sqrt{2(\mathbf{x} - \mathbf{y})}; \mathbf{b} = \sqrt{2(\mathbf{x} + \mathbf{y})}; \mathbf{c} = 3\mathbf{z}.$

What is the corresponding volume of the reciprocal space unit cell?

Answer:

The tedious way is to calculate all the reciprocal space vectors, and then calculate the volume by $V^* = \mathbf{a}^* \cdot (\mathbf{b}^* \times \mathbf{c}^*)$

It is faster to note that **a**, **b**, **c** are orthogonal, with a = b = 2, c = 3.

Then, in reciprocal space, $a^* = 2\pi/a = \pi$, $b^* = 2\pi/b = \pi$, $c^* = 2\pi/c = 2\pi/3$. In reciprocal space, $V^* = a^*b^*c^* = \pi \cdot \pi \cdot 2\pi/3 = \frac{2}{3}\pi^3$.

Alternatively, a theorem (see Kittel, problem 2.4) states that $V^* = (2\pi)^3/V$. With $V = \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} = abc = 2 \cdot 2 \cdot 3 = 12$, this gives $8\pi^3/12 = 2\pi^3/3$.

Version 2: Assuming that the primitive translation vectors of a lattice are given by $\mathbf{a} = \sqrt{3}(\mathbf{x} - \mathbf{y}); \mathbf{b} = \sqrt{3}(\mathbf{x} + \mathbf{y}); \mathbf{c} = 3\mathbf{z}$.

What is the corresponding volume of the reciprocal space unit cell?

Answer: Here, $a^* = 2\pi/a = 2\pi/\sqrt{6}$, $b^* = 2\pi/b = 2\pi/\sqrt{6}$, $c^* = 2\pi/c = 2\pi/3$. In reciprocal space: $V^* = a^*b^*c^* = (2\pi/\sqrt{6})^2(2\pi/3) = \frac{4}{9}\pi^3$.

Version 3: Assuming that the primitive translation vectors of a lattice are given by $\mathbf{a} = \sqrt{3}(\mathbf{x} - \mathbf{y}); \mathbf{b} = \sqrt{3}(\mathbf{x} + \mathbf{y}); \mathbf{c} = 2\mathbf{z}.$

What is the corresponding volume of the reciprocal space unit cell?

Answer:

Here, $a^* = 2\pi/a = 2\pi/\sqrt{6}$, $b^* = 2\pi/b = 2\pi/\sqrt{6}$, $c^* = 2\pi/c = \pi$. In reciprocal space: $V^* = a^*b^*c^* = (2\pi/\sqrt{6})^2\pi = \frac{2}{3}\pi^3$.

(Task 8 – 17 in random order)

Task 8-I. FT of linear grating

A real space density distribution (extending to infinity in all directions) is shown as the "Real space object":

The density variation $\rho(x,y)$ is given by the square of a sinusoidal variation on a flat background, ensuring that the density is everywhere ≥ 0 .

Which of the suggested patterns depicts the corresponding absolute square ("power spectrum") of the Fourier transform, i.e., $|FT(\rho)|^2$?

Answer:

A harmonic oscillation has only one frequency f_0 . The (complex) Fourier transform returns the positive and negative frequencies $(\pm f_0)$ with equal weight, symmetrically about the origin, with the direction corresponding to the wave front normal. In addition, the constant background corresponds to a Dirac δ -function at the origin of *k*-space (zero frequency or «dcterm»).

Correct answer: a.

Task 8-II. Max phonon vg

It can be shown that the dispersion relation for phonons on a 1D string with next nearest neighbours included is given by

$$\omega^2 = \frac{4}{M} \left(C_1 \sin^2 \frac{ka}{2} + C_2 \sin^2 ka \right)$$

Here, *M* is the mass of the atoms, C_1 and C_2 are force constants, *a* denotes the interatomic spacing and *k* is the wave vector.

Now assume $C_2 = \frac{1}{2} C_1$. The dispersion relation is plotted in the figure (red broken line). For comparison, the standard nearest neighbour dispersion relation with the same values for C_1 and M is also plotted.

What is the limiting value of the group velocity for large wavelengths?

$$\omega^{2} = \frac{4}{M} \left(C_{1} \sin^{2} \frac{ka}{2} + C_{2} \sin^{2} ka \right) \Rightarrow$$

$$\omega^{2} \approx \frac{4}{M} \left(C_{1} \frac{k^{2}a^{2}}{4} + C_{2}k^{2}a^{2} \right) = \frac{4k^{2}a^{2}}{M} \left(\frac{C_{1}}{4} + \frac{C_{1}}{2} \right) = \frac{4k^{2}a^{2}C_{1}}{M} \frac{3}{4}$$

$$\omega = \sqrt{\frac{3k^{2}a^{2}C_{1}}{M}} = ka\sqrt{\frac{3C_{1}}{M}}$$

$$v_{g} = \frac{\partial\omega}{\partial k} = a\sqrt{\frac{3C_{1}}{M}}$$

Task 8-III. Diffraction, morphology

In a diffraction experiment with monochromatic X-ray radiation, an unknown substance is measured. A point detector (sensor) is used to measure the intensity as function of scattering angle 2θ .

First, a scan is done of the scattering angle 2θ , giving a diffraction pattern $I(2\theta)$ consisting of many sharp Bragg peaks.

Second, the point detector is kept stationary at a position $2\theta_0$ which gave a strong measured intensity in the first scan. While the sample is rotated 360°, the scattered intensity measured by the detector shows only a few sharp diffraction points with low intensity in-between.

Which alternative can explain these observations?

Answer: single crystal.

Task 8-IV. Phonon collision

In a 1D phonon annihilation process two transverse acoustic phonons combine to give one longitudinal acoustic phonon. The dispersion relations for transverse and longitudinal phonons are

 $\omega_{TA} = \omega_0 |\sin(ka/2)|$ and $\omega_{LA} = 2\omega_0 |\sin(ka/2)|$

For which of the following acoustic phonon wave vectors k_1 and k_2 is the process allowed?

Answer:

 $\underline{k_1 = k_2} = 2\pi/3a$ simultaneously satisfies both conservation of crystal momentum and energy:

Crystal momentum before: $k_1 + k_2$ Crystal momentum after: $k_1 + k_2 = 2 \cdot 2\pi/3a = 4\pi/3a$, equivalent to $-2\pi/3a$.

Energy before: $2\omega_0 |\sin(ka/2)| = 2\omega_0 |\sin(\pi/3)| = \omega_0 \sqrt{3}$

Energy after: $\omega_{LA} = 2\omega_0 |\sin(ka/2)| = 2\omega_0 |\sin(\frac{-2\pi}{3a}\frac{a}{2})| = 2\omega_0 |\sin(\frac{-\pi}{3})| = \omega_0 \sqrt{3}$

(Similar calculations show that the other alternatives are not allowed)

Task 8-V. Filling ratio

A molecular crystal consists of densely packed compact spheroide-shaped molecules with radii $r_a = r_b < r_c$. There is one molecule per unit cell. The crystal structure is hexagonal, the molecules are oriented with their long axis along the unit cell *c*-axis, and $c = 2r_c$. In the (*a*,*b*)-plane, the molecules are hexagonally dense packed, with $a = b = 2r_a$. What is the filling ratio (or "packing ratio") of the structure?

Answer:

Volume of hexagonal unit cell:

nit cell:
$$V = a^2 c \sin(120^\circ) = \frac{\sqrt{3}}{2} (2r_a)^2 (2r_c) = 4\sqrt{3}r_a^2 r_c = V_{sph} = \frac{4}{3}\pi r_a^2 r_c$$

Volume of spheroide:

Filling ratio =
$$\frac{V_{sph}}{V_{cell}} = \frac{\frac{4}{3}\pi r_a^2 r_c}{4\sqrt{3}r_a^2 r_c} = \frac{\pi}{3\sqrt{3}} \approx 0.60$$

Task 8-VI. Fermi pressure

Thermodynamically, the pressure is related to the energy by $p = -\frac{\partial U}{\partial V} \bigg|_{N \text{ const}}$. One can thus derive that because of the volume dependence of the Fermi energy, $E_F \propto \left(\frac{N}{V}\right)^{2/3}$, the electron gas exerts a pressure.

Answer:

The volume dependence of the pressure of the free electron Fermi gas is given by:

Total energy of Fermi sphere ~ $E_0 + E_F \propto V^{-2/3}$, where E_0 is the zero-point energy (a constant).

$$p = -\frac{\partial E}{\partial V} \bigg|_{N} = -\frac{\partial}{\partial V} \bigg\{ V^{-\frac{2}{3}} \bigg\}_{N} \propto V^{-\frac{5}{3}}.$$

Task 8-VII. Monolayer el. struct.

A bulk material that can be exfoliated (turned into a single molecular layer, "2D" monolayer) has electronic band structure as shown in the figure. Which statement is correct?

Answer: The monolayer bandgap is direct. Compared to the bulk, it is larger.

Interested in more info? Read https://www.ossila.com/pages/molybdenum-disulfide-mos2

Task 8-VII. Average electron energy

According to the free electron Fermi gas model, the density of states is proportional to the square root of the energy, D(. Considering the 20% of the electrons, i.e., N/5, occupying the lowest energy states, what is their average energy at T = 0 K?

In the expressions below, N is the number of electrons and E_F denotes the Fermi energy.

Answer:

The easy way to approach this problem is to consider just a re-scaling of the Fermi-level. This gives immediately $\langle E_{20\%} \rangle = \frac{3}{25} E_F$

If a lengthier derivation is desired, one can for example proceed as follows. Let $D(E)dE = A\sqrt{E}dE$, where A is a constant.

We know that
$$N = \int_{0}^{E_{F}} D(E)dE$$
 and $E_{tot} = \int_{0}^{E_{F}} ED(E)dE$.
 $N_{20\%} = \int_{0}^{E_{F}/5} D(E)dE = A \int_{0}^{E_{F}/5} E^{1/2}dE = \frac{2A}{3} (E_{F}/5)^{3/2} = \frac{2}{3 \cdot 5^{3/2}} A E_{F}^{3/2}$
 $E_{20\%} = \int_{0}^{E_{F}/5} ED(E)dE = A \int_{0}^{E_{F}/5} E^{3/2}dE = \frac{2A}{5} (E_{F}/5)^{5/2} = \frac{2}{5^{7/2}} A E_{F}^{5/2}$
 $\langle E_{20\%} \rangle = \frac{E_{20\%}}{N_{20\%}} = \frac{3}{25} E_{F}$

Task 8-VIII. G vector

A single crystal is oriented in the orthogonal laboratory coordinate system (x,y,z), where z is the vertical direction. The crystal belongs to the monoclinic crystal system with primitive translation vectors oriented with $\mathbf{a} = a\mathbf{x}$, $\mathbf{b} = b\mathbf{y}$ and $\mathbf{c} = c \cos(\beta)\mathbf{x} + c \sin(\beta)\mathbf{z}$. The incoming X-ray beam is directed along y. The point detector (sensor) is placed in the (y,z) plane, and is at an angle 2θ with respect to the horizontal, as shown in the figure.

Define a reciprocal coordinate system X, Y, Z, with $X \parallel x, Y \parallel y$, and $Z \parallel z$. Which expression gives a correct representation of the reciprocal lattice vector G_{100} ?

Answer:

$$\mathbf{G}_{100} = \mathbf{a}^* = \frac{2\pi}{V_c} \mathbf{b} \times \mathbf{c}, \ V_c = \mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = abc \sin \beta$$
$$\mathbf{b} \times \mathbf{c} = bc < \sin \beta, 0, -\cos \beta >$$
$$\mathbf{G}_{100} = \frac{2\pi}{a} < 1, 0, -\cot \beta >$$

Task 8-IX. Q vector

A single crystal is oriented in the orthogonal laboratory coordinate system (x,y,z), where z is the vertical direction. The crystal belongs to the monoclinic crystal system with primitive translation vectors oriented with $\mathbf{a} = a\mathbf{x}$, $\mathbf{b} = b\mathbf{y}$ and $\mathbf{c} = c \cos(\beta)\mathbf{x} + c \sin(\beta)\mathbf{z}$. The incoming X-ray beam is directed along y. The point detector (sensor) is placed in the (y,z) plane, and is at an angle 2θ with respect to the horizontal, as shown in the figure.

Define a reciprocal coordinate system $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, with $\mathbf{X} \parallel \mathbf{x}, \mathbf{Y} \parallel \mathbf{y}$, and $\mathbf{Z} \parallel \mathbf{z}$. Which expression gives a correct representation of the scattering vector \mathbf{Q} that can be measured with the given geometry?

Answer:

$$\mathbf{k}_{i} = \frac{2\pi}{\lambda} < 0, 1, 0 >, \ \mathbf{k}_{f} = \frac{2\pi}{\lambda} < 0, \cos 2\theta, \sin 2\theta >$$

 $\mathbf{Q} \equiv \mathbf{k}_{f} - \mathbf{k}_{i} = \frac{2\pi}{\lambda} < 0, \cos 2\theta - 1, \sin 2\theta >$

Task 18. Inverse Umklapp

Version 1

In a rectangular 2D lattice with a = 6.90 Å and b = 4.50 Å, three phonons each having wave vector $\mathbf{k} = \langle 0.80, 0.90 \rangle$ Å⁻¹ merge to become one phonon. (Assume that the energy is conserved).

What is the reduced zone scheme representation of the resulting phonon?

3**k** = <2.4, 2.7> Å⁻¹. *a* = 6.90 Å → *a*^{*} = 2π/6.90 Å⁻¹ = 0.91 Å⁻¹. 1st BZ boundary at 0.45 Å⁻¹. *b* = 4.50 Å → *b*^{*} = 2π/4.50 Å⁻¹ = 1.40 Å⁻¹. 1st BZ boundary at 0.70 Å⁻¹.

2.4 - 3.0.91 = -0.332.7 - 2.1.40 = -0.10Answer: <-0.33, -0.10>

Version 2

In a rectangular 2D lattice with a = 6.90 Å and b = 4.60 Å, four phonons each having wave vector $\mathbf{k} = \langle 0.80, 0.90 \rangle$ Å⁻¹ merge to become one phonon. (Assume that the energy is conserved). What is the reduced zone scheme representation of the resulting phonon?

4**k** = <3.2, 3.6> Å⁻¹. *a* = 6.90 Å → *a*^{*} = 2π/6.90 Å⁻¹ = 0.91 Å⁻¹. 1st BZ boundary at 0.45 Å⁻¹. *b* = 4.60 Å → *b*^{*} = 2π/4.60 Å⁻¹ = 1.37 Å⁻¹. 1st BZ boundary at 0.68 Å⁻¹.

3.2 - 4.0.91 = -0.443.6 - 3.1.37 = -0.51Answer: <-0.44, -0.51>

Version 3 In a rectangular 2D lattice with a = 6.90 Å and b = 4.60 Å, two phonons each having wave vector $\mathbf{k} = \langle 0.80, 0.90 \rangle$ Å⁻¹ merge to become one phonon. (Assume that the energy is conserved). What is the reduced zone scheme representation of the resulting phonon?

2**k** = <1.6, 1.8> Å⁻¹. *a* = 6.90 Å → *a*^{*} = 2π/6.90 Å⁻¹ = 0.91 Å⁻¹. 1st BZ boundary at 0.45 Å⁻¹. *b* = 4.60 Å → *b*^{*} = 2π/4.60 Å⁻¹ = 1.37 Å⁻¹. 1st BZ boundary at 0.68 Å⁻¹.

 $1.6 - 2 \cdot 0.91 = -0.22$ $1.8 - 1 \cdot 1.37 = 0.43$ Answer: <-0.22, 0.43>

Task 19. Energy at 2D hex M point

Version 1

The figure shows the Brillouin zone of a 2D hexagonal lattice.

According to the free electron Fermi model, what is the energy of electrons at the *M* point in reciprocal space (see sketch)?

Assume a = 2.9 Å.

(Take the energy to be zero at the Brillouin zone centre).

Answer:

$$a^{*} = \frac{2\pi}{a_{\perp}} = \frac{2\pi}{a\sqrt{3}/2} = \frac{4\pi}{\sqrt{3}a}; \ k_{M} = \Gamma M = \frac{a^{*}}{2} = \frac{2\pi}{\sqrt{3}a}; \ E = \frac{\hbar^{2}k^{2}}{2m} = \frac{\hbar^{2}}{2m}\frac{4\pi^{2}}{3a^{2}} = \frac{\hbar^{2}}{6ma^{2}}$$

With numbers: E = 6.0 eV.

Version 2:

The figure shows the Brillouin zone of a 2D hexagonal lattice.

According to the free electron Fermi model, what is the energy of electrons at the *M* point in reciprocal space (see sketch)?

Assume a = 4.1 Å.

(Take the energy to be zero at the Brillouin zone centre).

E = 3.0 eV

Version 3: The figure shows the Brillouin zone of a 2D hexagonal lattice.

According to the free electron Fermi model, what is the energy of electrons at the *M* point in reciprocal space (see sketch)?

Assume a = 2.5 Å.

(Take the energy to be zero at the Brillouin zone centre).

E = 8.0 eV

(Task 20 – 25 in random order)

Task 20-I. Fourier filtering

Figure illustrating Fourier filtering. a) Artificially generated object. b) Fourier transform squared of the object shown in (a). c) Illustration of a mask applied to the Fourier transform. d) Resulting image after inverse Fourier transformation of the masked signal.

The red crosses mark the origin of Fourier space ($k_x = k_y = 0$).

Which of the following statements is *incorrect*?

Answer: The *incorrect* statement is that the illustrated process corresponds to bright-field imaging.

Task 20-II. Basis of FCC unit cell.

A unit cell with the generic structure AB_2 is face centered cubic (FCC), with A^{2+} in the corners and the face centres, and B^- on the space diagonals at a distance of 1/4 of the diagonal from all the corners.

Which alternative gives a correct description of the basis (associated with each Bravais lattice point) for this FCC unit cell?

Answer: The basis is <u>A⁺ at (1,0,0)</u> (which is equivalent to (0,0,0)) B- at (-1/4, -1/4, -1/4) and (1/4, 1/4, 1/4).

Task 20-III. Intensity based on form factor.

A cubic crystal structure containing two elements with atomic form factors f_A and f_B has structure factor given by

$$S_{hkl} = f_A(1 + (-1)^{h+k+l}) + f_B \exp(\frac{\pi}{2}i(h+k+l)) \cdot [1 + (-1)^{h+k} + (-1)^{k+l} + (-1)^{l+h}].$$

Which expression is proportional to the scattered *intensity* in the special case of h, k and l all odd? Assume f_A and f_B real.

Answer: For *h*,*k*,*l* all odd, one finds that a simplified expression for the form factor is

$$S_{hkl} = 4i(-1)^n f_B$$

The intensity is proportional to the absolute square of the structure factor, giving

 $I_{all odd} = \left| 4i(-1)^n f_B \right|^2 = 16f_B^2$

Task 20-IV. Bloch function

A 1D electronic wave function is given by $\psi_k(x) = \exp(ikx)\exp(-B\sin^2(\sqrt{\kappa}x))$, where *B* and κ are constants.

Which of the expressions below satisfies the requirements for ψ_k to describe an electronic state in a periodic potential?

Answer: Both $\kappa = (\pi / a)^2$ and $\kappa = (2\pi / a)^2$ must be approved for this task, as these expressions give a Bloch function being a plane wave multiplied by a periodic function having the periodicity of the lattice.

Task 20-V. GaAs optics

The figure shows the dispersion relations for lattice vibrations in GaAs, which is cubic with a = 5.65 Å. Find the approximate wavelength of the most strongly absorbed electromagnetic radiation by the LO phonons.

Answer: Near the Γ point, the energy is $E = 36.0 \text{ meV} = 5.76\text{e}{-21} \text{ J}$. Photons with this energy have a wavelength λ , given implicitly by $E = \frac{hc}{\lambda}$

Thus, $\lambda = \frac{hc}{E} = \frac{35 \ \mu \text{m.}}{E}$

Task 20-VI. Semiconductor, speed of sound

The figure shows the dispersion relations for lattice vibrations in a semiconductor, which is cubic with a = 5.65 Å. Note that the *X*-point of the fcc structure is at $2\pi/a$.

Find the approximate speed of sound corresponding to the TA mode, using the indicated intersection at E = 25.0 meV.

Answer: The energy at the intersection with the X point is 25 meV = 4.00e-21 J. $\Delta \omega = E / \hbar = 3.79e13 \text{ rad}^{-1}.$ X-point: $\Delta k = 2\pi/a = 2$ $vg = \frac{\partial \omega}{\partial k} \approx \frac{d\omega}{dk}$

25e-3*ee/hbar/(2*pi/5.65e-10) = 3410 m/s.

Task 26. Cv diamond

Version 1

Diamond has a Debye temperature of about 1860 K. Estimate the heat capacity of diamond at 180 K using the Debye formalism.

 $C' = 12/5 \pi^4 N k_B (T/T_D)^3$ Heat capacity for N atoms $C = N_A \cdot C'/N = 12/5 \pi^4 N k_B (T/T_D)^3$ Heat capacity for n moles

NA = 6.022e23; kB = 1.38e-23; C = 12*pi^4/5*kB*(180/1860)^3 * NA = 1.76 <u>Answer: 1.7 J/(mol·K)</u>

Version 2

Diamond has a Debye temperature of about 1860 K. Estimate the heat capacity of diamond at 160 K using the Debye formalism.

 $C = 12*pi^{4/5}kB*(160/1860)^{3} NA = 1.23$ <u>Answer: 1.2 J/(mol·K)</u>

Version 3

Diamond has a Debye temperature of about 1860 K. Estimate the heat capacity of diamond at 140 K using the Debye formalism.

 $C = 12*pi^{4}/5*kB*(140/1860)^{3} * NA = 0.83$ <u>Answer: 0.8 J/(mol·K)</u>