

Department of Physics

Examination paper for TFY4225 Nuclear and Radiation Physics

i ilyoloo	
Academic contact during examination: Pål Erik Goa	
Phone: 959 08026	
Examination date: 01.12.2015	
Examination time (from-to): 9.00-13.00	
Permitted examination support material (code C):	
Simple specified calculator	
Barnett & Cronin: Mathematical Formulae	
Rottmann: Matematische Formelsammlung	
Other information: Each sub-question (1, 3a, 3b etc) carries equal weight in	the
evaluation. Exam might be answered in English or Norwe	gian.
Language: English	
Number of pages (front page excluded): 3	
Check	ed by:

Date

Signature

CONSTANTS

Speed of light	c	$2.99792458 \times 10^8 \text{ m/s}$
Charge of electron	e	$1.602189 \times 10^{-19} \mathrm{C}$
Boltzmann constant	\boldsymbol{k}	$1.38066 \times 10^{-23} \text{ J/K}$
	•	$8.6174 \times 10^{-5} \text{eV/K}$
Planck's constant	h	$6.62618 \times 10^{-34} \text{J} \cdot \text{s}$
		$4.13570 \times 10^{-15} \text{eV} \cdot \text{s}$
	$\hbar = h/2\pi$	$1.054589 \times 10^{-34} \mathrm{J\cdot s}$
•	•	$6.58217 \times 10^{-16} \text{eV} \cdot \text{s}$
Gravitational constant	\boldsymbol{G}	$6.6726 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$
Avogadro's number	N_{A}	$6.022045 \times 10^{23} \text{ mole}^{-1}$
Universal gas constant	R	8.3144 J/mole · K
Stefan-Boltzmann constant	σ	$5.6703 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$
Rydberg constant	R_{∞}	$1.0973732 \times 10^7 \mathrm{m}^{-1}$
Hydrogen ionization energy	~	13.60580 eV
Bohr radius	a_0	$5.291771 \times 10^{-11} \text{ m}$
Bohr magneton	μ_{B}	$9.27408 \times 10^{-24} \text{ J/T}$
	•	$5.78838 \times 10^{-5} \text{eV/T}$
Nuclear magneton	μ_{N}	$5.05084 \times 10^{-27} \mathrm{J/T}$
G		$3.15245 \times 10^{-8} \text{eV/T}$
Fine structure constant	α	1/137.0360
	hc	1239.853 MeV · fm
	ħc	197.329 MeV · fm
	$e^2/4\pi\epsilon_0$	1.439976 MeV · fm

PARTICLE REST MASSES

	$oldsymbol{u}$, $oldsymbol{u}$, $oldsymbol{u}$	MeV/c^2
Electron	5.485803×10^{-4}	0.511003
Proton	1.00727647	938.280
Neutron	1.00866501	939.573
Deuteron	2.01355321	1875.628
Alpha	4.00150618	3727.409
$\pi^{\hat{\pm}}$.	0.1498300	139.5669
π^{0}	0.1448999	134.9745
μ : : : : : : : : : : : : : : : : : : :	0.1134292	105.6595

CONVERSION FACTORS

1 eV = 1.602189 × 10⁻¹⁹ J 1 b =
$$10^{-28}$$
 m²
1 u = 931.502 MeV/ c^2 1 Ci = 3.7×10^{10} decays/s = 1.660566 × 10^{-27} kg

Problem 1

Choose an analytical or industrial application of radiation discussed in this course.

- Explain the main physical principles of the method.
- Describe typical applications.

Problem 2

Describe the experimental setup you would use to measure the linear attenuation coefficient of a material:

- Draw a sketch of the setup and the different components involved, and name all the parts.
- Describe the measurement procedure and the data analysis.
- Explain what is meant by "buildup", and describe how your setup is designed to avoid influeence from this effect.

Problem 3

3a)

Write down the expression for the reaction energy Q in an alpha-decay process and explain the terms. Use energy and momentum conservation to derive an expression for the kinetic energy of the alpha-particle expressed as a function of Q and particle masses of the decay products. Assume the parent nucleus is at rest.

3b)

Rewrite the expression of Q in terms of atomic mass excess values and calculate the value of Q for the alpha-decay of $^{232}_{90}Th$. Atomic mass excess values are: 4 He = 2603 μ u, $^{232}_{90}Th$ = 38050 μ u and $^{228}_{88}Ra$ = 31064 μ u.

3c)

The semi-classical theory of alpha decay allows us to estimate the half-life of an alphadecaying nuclide based on the following expression:

$$\lambda = Pf \exp(-2G) \tag{1}$$

where

$$G = \sqrt{\frac{2m}{\hbar^2 Q}} \frac{2Ze^2}{4\pi\varepsilon_0} \left[\cos^{-1}(\sqrt{Q/B}) - \sqrt{(Q/B)(1 - Q/B)} \right]$$

Explain the physical model which leads to equation 1, and define the terms.

3 d)

Estimate the half-life of $^{232}_{90}Th$ using the above expressions. Use R₀=1.2 fm, assume a preformation probability of 1 and U = 120 MeV for the potential depth inside the heavy nucleus. The Coulomb potential energy between two charges separated by distance R is generally given by $q_1q_2/4\pi\epsilon_0R$.

Problem 4

Assume a nuclear reaction between a heavy nucleus (A = 113) at rest and a neutron with kinetic energy 0.17 eV. The reaction is a resonance with a total peak width of 0.13 eV. By comparing estimates of the mean lifetime of this resonance and the collision time, determine if the reaction is a compound nucleus reaction or a direct reaction.

Problem 5

An X-ray source is emitting 100 keV photons. How many photons must be emitted from the source in order to give an expected 100 counts from the primary beam in a 2 mm thick CsI-scintillator detector placed behind 15 cm of water. Linear attenuation coefficients of water and CsI @100 keV are 0.227 cm⁻¹ and 9.16 cm⁻¹ respectively.

Problem 6

Explain the physics behind the term *charged particle equilibrium* (CPE). Plot the local dose D deposition as function of the position across the boundary between two materials where $\left(\frac{\mu_{en}}{\rho}\right)_1 < \left(\frac{\mu_{en}}{\rho}\right)_2$ and $\left(\frac{S_c}{\rho}\right)_1 < \left(\frac{S_c}{\rho}\right)_2$.

Problem 7

Determine spin and parity of $^{35}_{17}Cl$ in its ground state, and suggest possible spin-parity states of excited states. The sequence of the lower states in the shell model is 1s1/2, 1p3/2, 1p1/2, 1d5/2, 2s1/2, 1d3/2.

Use angular momentum conservation to determine the multipolarity of the gamma emission from a 1/2+ excited state to the ground state in 35 Cl. How will the lifetime of this excited state compare with common lifetimes of excited states in nuclei?