

Department of Physics

Examination paper for TFY4225 Nuclear and Radiation Physics

Academic contact during examination: Pål Erik Goa Phone: 959 08026

Examination date: 05.12.2016

Examination time (from-to): 9.00-13.00

Permitted examination support material (code C):

- Simple specified calculator
- Barnett & Cronin: Mathematical Formulae
- Rottmann: Matematische Formelsammlung

Other information: Each sub-question (1, 2a, 2b etc) carries equal weight in the evaluation. Exam might be answered in English or Norwegian.

Language: English Number of pages (front page excluded): 9

Checked by:

Date

Signature

Note: Important information is given in tables, figures and equations after the problem text! Please browse through all sides before you start to work on the problems.

Problem 1

The nuclear shell model was a major step forward in nuclear physics.

- Describe the key ingredient of the model and how this affected the output.
- What were the two main success-criteria for the model?
- Explain what is meant by the "extreme independent particle model".
- Give one example situation where the "extreme independent particle model" does not work.

Problem 2

 ${}^{11}C$ can be used in positron emission tomography and can be produced in a cyclotron via the following reaction:

 ${}^{14}N(p,\alpha){}^{11}C$

The mass excess values for the particles involved are: ^{14}N : $3074\mu u,^{1}H$: $7825\mu u,^{4}He:2603\mu u,^{11}C:11434\mu u.$

Problem 2a

- Calculate the Q-value for the above nuclear reaction.
- Derive the expression for the required minimum (threshold) kinetic energy T_{th} of the proton in order for the reaction to occur.
- Calculate the numeric value of T_{th} .

Problem 2b

- Calculate the Coulomb barrier for the reaction (use $R_0 = 1.6 fm$).
- Relate your results in 2a and 2b to the observed reaction cross-section as shown in figure 1, in particular the range 0-6 MeV.

Problem 2c

Production of ${}^{11}C$:

- Set up the differential equation for the number of ${}^{11}C$ product nuclei $N_1(t)$, given a constant reaction rate R.
- Show that the expression for $N_1(t)$ given on the formula sheet is a solution to your equation, and calculate the irradiation time required to reach 90 % of maximum activity.

Problem 2d

The decay scheme of ${}^{11}C$ is shown in figure 2.

- In the Fermi theory for beta-decay, explain the approximation behind what is called an *allowed* transition. Show that this approximation is justified.
- Explain/derive the selection rules for angular momentum and parity in the allowed approximation and explain why beta decay of ${}^{11}C$ is an allowed transition.
- What is the difference between a Fermi type and a Gamow-Teller type transition? Can you tell which type the ${}^{11}C$ beta decay is? Justify your answer.

Problem 2e

A patient is injected with 1 GBq of ${}^{11}C$ for a PET exam. Assume even distribution of activity in the body and no biological clearance. Photon attenuation length in soft tissue @ 511 keV is 36 cm.

• Calculate the whole body effective dose to the patient. If you need to make any further simplifying assumptions, please justify/explain them.

Problem 3

In figure 3 an example of a chain of events in a small volume of mass $dm = 1\mu g$ is shown. A photon of energy $E_{\gamma} = 662 keV$ is Compton-scattered and an electron is released with initial kinetic energy $T_e = 100 keV$. This electron is scattered and a bremsstrahlung photon with energy $E_b = 20 keV$ is emitted and leaves the volume. Via further interactions, the electron comes to rest within the volume.

• Calculate the energy imparted ε and KERMA K for this example.

Problem 4

In the lab-assignments of this course we used two different detectors: a) NaI scintillator detector and b) HPGe (high-purity Germanium) semi-conductor detector.

- Describe the chain of events in the NaI scintillator detector from the initial interaction between the photon and the scintillator material to a count in the spectrum shown on the computer screen.
- Describe the chain of events in the HPGe detector.
- Describe how the output spectra from the two detectors will look. What is the key physical origin of the difference between the two spectra?

Problem 5

The following 9 topics of "Sources of Radiation" were covered in the first project work of this course:

- 1. Natural Radioactivity on Earth.
- 2. Radon Gas: focus on Norway.
- 3. Cosmic Radiation.
- 4. Medical Imaging Exams.
- 5. Chernobyl: Local Consequences and Europe in General.
- 6. Chernobyl: Consequences in Norway.
- 7. Fukushima Accident.
- 8. Low Dose Risk: Linear-No-Threshold Model.
- 9. Low Dose Risk: Hormesis Model.

Choose one of the above topics and describe what was presented on that topic.

Problem 6

The neutron absorption and scattering cross section for light water (H_2O) and heavy water (D_2O) is given in table 1. With respect to the neutron cycle in a thermal fission reactor, which type of water will give the highest neutron multiplication factor, given all other things equal? Justify your answer.

Material	σ_a	σ_s
	(b)	(b)
H_2O	0.66	49.2
D_2O	0.001	10.6

Table 1: Neutron absorption and scattering cross sections

Figure 1: Reaction cross section for ${}^{14}N(p,\alpha){}^{11}C$.

Figure 2: Decay scheme of ^{11}C .

Figure 3: Example radiation interactions in a small volume.

CONSTANTS

Speed of light	с	2.99792458 × 10 ⁸ m/s
Charge of electron	е	$1.602189 \times 10^{-19} \text{ C}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \text{ J/K}$
· · · · · · · · · · · · · · · · · · ·		$8.6174 \times 10^{-5} \mathrm{eV/K}$
Planck's constant	h	$6.62618 \times 10^{-34} \text{ J} \cdot \text{s}$
		$4.13570 imes 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
	$\hbar = h/2\pi$	$1.054589 imes 10^{-34} ext{ J} \cdot ext{s}$
	,	$6.58217 imes 10^{-16} \mathrm{eV} \cdot \mathrm{s}$
Gravitational constant	G	$6.6726 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Avogadro's number	NA	$6.022045 \times 10^{23} \text{ mole}^{-1}$
Universal gas constant	R	8.3144 J/mole · K
Stefan-Boltzmann constant	σ	$5.6703 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$
Rydberg constant	R _∞	$1.0973732 \times 10^{7} \mathrm{m^{-1}}$
Hydrogen ionization energy		13.60580 eV
Bohr radius	<i>a</i> ₀	$5.291771 \times 10^{-11} \text{ m}$
Bohr magneton	$\mu_{\rm B}$	$9.27408 \times 10^{-24} \text{ J/T}$
	, 1	$5.78838 \times 10^{-5} \mathrm{eV/T}$
Nuclear magneton	μ_N	$5.05084 \times 10^{-27} \text{J/T}$
,		$3.15245 \times 10^{-8} \mathrm{eV/T}$
Fine structure constant	α	1/137.0360
	hc	1239.853 MeV · fm
	ħc .	197.329 MeV · fm
	$e^2/4\pi\epsilon_0$	1.439976 MeV · fm

PARTICLE REST MASSES

	u	MeV/c^2
Electron	$5.485803 imes 10^{-4}$	0.511003
Proton	1.00727647	938.280
Neutron	1.00866501	939.573
Deuteron	2.01355321	1875.628
Alpha	4.00150618	3727.409
π^{\pm}	0.1498300	139.5669
π^{0}	0.1448999	134.9745
μ	0.1134292	105.6595
CONVERSION FACTORS		N. C.
$1 \text{ eV} = 1.602189 \times 10^{-19} \text{ J}$	$1 b = 10^{-28} m^2$	\mathbf{N}
$1 \mu = 931.502 \text{MeV}/c^2$	$1 \text{ Ci} = 3.7 \times 10^{10} \text{ decays}$	/s

 $u = 931.502 \text{ MeV}/c^2$ = 1.660566 × 10⁻²⁷ kg

Figure 4: Physical constants.

Appendix: Selected expressions

$$F = \frac{|q_1 q_2|}{4\pi\epsilon_0 r^2}$$

$$P = \frac{q_1 q_2}{4\pi\epsilon_0 r}$$

$$F = qE + q\vec{v} \times \vec{B}$$

$$\vec{p} = m\vec{v}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$F = ma$$

$$F = \frac{mv^2}{r}$$

$$U(\vec{r}) = -\int_{\infty}^{\vec{r}} \vec{E} \cdot d\vec{r}$$

$$\Delta \vec{p}(t) = \int_{0}^{t} \vec{F} d\tau$$

$$T = \frac{1}{2}mv^2$$

$$p = \frac{mv}{\sqrt{1 - v^2/c^2}}$$

$$E = \sqrt{p^2c^2 + m^2c^4}$$

$$T = E - mc^2$$

$$E_0 = mc^2$$

$$\lambda = \frac{h}{p}$$

$$\Delta p\Delta x \leq \frac{h}{2}$$

$$\Delta E\Delta t \leq \frac{h}{2}$$
Plane wave $\psi(x) = e^{i\vec{p}\cdot\vec{r}/h}$

$$\langle l^2 \rangle = \hbar^2 l(l+1)$$

$$\langle l_2 \rangle = \hbar m_l$$

$$B = a_v A - a_s A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_{sym} \frac{(A - 2Z)^2}{A} + \delta$$

$$Q = \sum_i m_i c^2 - \sum_f m_f c^2$$

$$\begin{split} N(t) &= N_0 e^{-\lambda t} \\ A(t) &\equiv \lambda N(t) \\ t_{1/2} &= \frac{ln^2}{\lambda} = \tau ln^2 \\ N_1(t) &= \frac{R}{\lambda_1} (1 - e^{-\lambda_1 t}) \\ N_2(t) &= N_0 \frac{\lambda_1}{\lambda_2 - \lambda_1} (e^{-\lambda_1 t} - e^{-\lambda_2 t}) \\ \lambda &= \frac{2\pi}{h} |V_f u|^2 \rho(E_f) \\ V_{fi} &= \int \psi_f^* V \psi_i d\nu \\ \lambda &= \frac{g^2 |M_{fi}|}{2\pi \hbar^7 c^3} \int_0^{p_{max}} F(Z', p) p^2 (Q - T_e)^2 dp \\ \pi(ML) &= (-1)^{L+1} \\ \pi(EL) &= (-1)^L \\ \sqrt{T_b} &= \frac{\sqrt{m_a m_b T_a} \cos \theta \pm \sqrt{m_a m_b T_a} \cos^2 \theta + (m_Y + m_b) [m_Y Q + (m_Y - m_a) T_a]}{m_Y + m_b} \\ \sigma_{sc} &= \sum_{l=0}^{\infty} \pi \lambda (2l+1) |1 - \eta|^2 \\ \sigma_r &= \sum_{l=0}^{\infty} \pi \lambda (2l+1) (1 - |\eta|^2) \\ -\frac{dE}{dx} &= \left(\frac{2e^2}{4\pi c_0}\right)^2 \frac{4\pi Z \rho N_A}{Am v^2} \left[ln \left(\frac{2mv^2}{l}\right) - ln(1 - \beta^2) - \beta^2 \right] \\ n &= \frac{\rho N_A}{A} \\ N &= N_0 e^{-\mu x} \\ \mu &= n\sigma \\ \sigma &= \sigma_{PE} + Z \sigma_C + \sigma_{PP} \\ D &= \frac{dE}{dm} \\ \varepsilon &= R_{in} - R_{out} + \sum Q \\ K &= \frac{dD_T}{dm} \end{split}$$

$$K_{C} = E\Phi\left(\frac{\mu_{en}}{\rho}\right)$$

$$D(r_{T}, T_{D}) = \sum_{r_{S}} \tilde{A}(r_{S}, T_{D})S(r_{T} \leftarrow r_{S})$$

$$S(r_{T} \leftarrow r_{S}) = \frac{1}{M(r_{T})}\sum_{i} E_{i}Y_{i}\phi(r_{T} \leftarrow r_{S}, E_{i})$$

$$\tilde{A}(r_{S}, T_{D}) = \int_{0}^{T_{D}} A(r_{S}, t)dt$$

$$E = \sum_{T} w_{T}\sum_{R} w_{R}D_{R}(r_{T}, T_{D})$$