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Problem 1

The key ingredient in the nuclear shell model was the spin-orbit coupling. The
main potential function in the shell model consists of a central-symmetric part,
but it was not until a small additional term consisting of a ~l · ~s-term that
the model was successful. The spin-orbit coupling results in a splitting of the
original energy-levels as determined from l and s into new levels based on the
new quantum number for total angular momentum j.

The main success of the nuclear shell model was twofold:

• Its ability to predict the correct ”magic numbers”, which are the neutron
and proton numbers for particularly stable isotopes.

• Its ability to predict the correct spin and parity for the ground state of
most odd-A nuclides. The model can also be used to predict spin-parity
of possible excited states.

The ”extreme independent particle model” is when we assume that the spin-
parity state of the single unpaired nucleon in a odd-A nucleus determines the
spin-parity for the nucleus as a whole. All other nucleons are paired and con-
tributes with 0+.

One example of when the ”extreme independent particle model” does not
work is the excited states of intermediately sized nuclides of even-even type. For
these nuclides, a better model for the excited states is the liquid drop model
with vibrational and/or rotational states.

Problem 2a

When calculating the Q-value for a nuclear reaction (nucleon number conserved)
we can use directly the mass excess values:

Q =
∑
i

mic
2 −

∑
f

mfc
2
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= (3074µu+ 7825µu− 2603µu− 11434µu) · 931.5 MeV/uc2 · c2

= −2.923 MeV

Due to the mass changes involved in a nuclear reaction, the expression for
the kinetic energy Tb for the product particle b is quite complicated (see the
formula sheet). For negative Q, the expression inside the square-root sign can
become negative, and we end up with physically impossible solutions for certain
values of Ta. This means that there exists a minimum threshold Ta = Tth for
which the reaction is possible (real-valued Tb). This is found by setting the
expression inside the square-root sign to zero and choose θ = 0:

mambTa,min + (mY +mb) [mYQ+ (mY −ma)Ta,min] = 0

Tth = Ta,min = −Q mY +mb

mY +mb −ma

Sufficiently accurate estimate for the numerical value for Tth is found

Tth = 2.923MeV
11 + 4

11 + 4− 1

=
15

14
· 2.923MeV = 3.132MeV

Problem 2b

We calculate the value for the Coulomb potential energy P for the case of closest
”hard-sphere” distance of the two nuclei:

R = Rp +R14N

= R0(1 + 141/3) = 1.6 fm · 3.41 = 5.46 fm

P =
q1q2

4πε0R

= 1.44 MeV fm · 7 · 1
5.46 fm

= 1.85MeV

From figure 1 we can observe that the reaction cross section is zero for Ta
below approximately 3.5 MeV. This is around the value we found for Tth. The
cross section stays low until around 5 MeV where it rises sharply. The sum of
the threshold energy and the Coulomb barrier as calculated in problem 2a and
2b is close to 5.0 MeV, and although some tunneling occur for Ta below that
value, it is natural that the cross section rises when the total kinetic energy
equals the sum of Tth and P .

Problem 2c

dN1 = Rdt− λ1N1dt
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To show that the expression given on the formula sheet is indeed the solution
we plug the solution into the equation above and compare it with the direct
dN1/dt as given from the solution:

N1(t) =
R

λ1
(1− e−λ1t)

dN1

dt
= R− λ1N1 = R−R(1− e−λ1t)

= Re−λ1t

dN1

dt
=

R

λ1
(0− (−λ1e

−λ1t))

= Re−λ1t

The two expressions agree and we have shown that the expression in the formula
sheet is the correct solution. Finally we calculate the required time to reach 90
% of maximum activity:

A(t) ≡ λ1N(t)

A(t0.9) = λ1
R

λ1
(1− e−λ1t0.9) = 0.9R

t0.9 =
ln(0.1)

−λ1
=
ln(10)t1/2

ln(2)

= 4.058 · 103 s = 67.64 min

Problem 2d

The Fermi theory of beta decay uses Fermis Golden rule, which states that the
decay rate is the product of the square of the matrix element Vfi between the
initial and final quasi-stationary states of the system and the density of final
states. The total final wavefunction for the system (which goes into the matric
element) consists of the product of the nuclear wave function ψf and the electron
and neutrino wave functions φe and φν . The allowed approximation states that
to the lowest order, the electron and neutrino wave functions, which in general
has the free particle form ei~p·~r/h̄, can be approximated by a constant value. This
can be formally written as a Taylor expansion of the exponential function and
keeping only the first term:

ei~p·~r/h̄ = 1 +
i~p · ~r
h̄

+ ...

≈ 1

The approximation is justified by showing that the de-Broglie wavelength λ of
the emitted electron is much larger than the size of the nucleus. For Te = 1
MeV we get (using the relativistic expressions from the formula sheet):

E2 = p2c2 +m2
ec

4 = (Te +mec
2)2
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p =

√
T 2
e

c2
+ 2Teme

= 1.422MeV/c

λ =
h

p
=

4.1357 · 10−15eV · s · 2.998 · 108m/s

1.422MeV

= 8.719 · 10−13 m = 872 fm

The nuclear radius is in the order of a few fm, so in the overlap region between
the nuclear and electron wave function, the electron wave function can be well
approximated by a constant value.

In the allowed approximation, the two emitted particles can NOT carry away
any orbital angular momentum (wave function centered on the origin, s-wave,
l=0). However, both particles have spin 1/2, which can either be aligned in
opposite directions (Fermi-type) or in the same direction (Gamow-Teller type).
The above gives the following selection rules for the allowed decay (using usual
vector addition for angular momentum conservation and that the parity of s-
wave is even):

Fermi− type : |Ii − If | = 0,∆π = no

G− T type : 1 ≥ |Ii − If | ≥ 0,∆π = no

A special case occurs for Ii = If = 0, for which only Fermi type decay is allowed.
The beta-decay of 11C is a transition between a 3/2- state and a 3/2- state.

This means that |Ii−If | = 0 and ∆π = no. The decay is a combined Fermi-type
and G-T type allowed transition.

Problem 2e

From the formula sheet we find the expression for the whole body effective dose.
The given problem is very similar to problem 4 in week 10 exercises, and a more
detailed discussion can be found there. Here we simply redo the numerical
calculations with the current data:

Ãbody =

∫ 50 years

0

A0e
−λtdt

≈
∫ infty

0

A0e
−λtdt =

A0

λ

=
A0T1/2

ln(2)

1 · 109 Bq · 1.2217 · 103 s

ln(2)

= 1.7625 · 1012

S(rT ← rS) =
1

MT

[
Qβ+/3 · 1 · δST + 2 · 511 keV

kMT

Mbody

]
=

320keV

MT
δST +

511keV

Mbody
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where we have set the photon absorbed fraction (k) to 0.5. This is a ball park
value based on the attenuation length of 36 cm in soft tissue. The precise value
is not critical, but to take the partial absorption of the annihilation photons
into account is important.

E =
∑
T

wT
∑
R

wR
∑
rS

Ãbody
MS

Mbody

[
320keV

MT
δST +

511keV

Mbody

]

=
Ãbody
Mbody

∑
T

wT
∑
R

wR

[
205keV +

496keV

Mbody

∑
rS

MS

]

=
831keV · Ãbody

Mbody
= 3.1mSv

where we have used Mbody = 75 kg, that
∑
T wT = 1 and

∑
SMS = Mbody, and

finally that wR= 1 for both positrons and photons.

Problem 3

Energy imparted:

ε = Eγ − E′γ − Eb
= 662keV − (662 keV − 100 keV )− 20 keV = 80 keV

KERMA:

K =
dEtr
dm

=
100keV

1µg

= 1.6 · 10−5J/kg = 0.016 mGy

Problem 4 and 5

These two problems are very descriptive, and you are referred to the course
literature.

Problem 6

The intention of this problem is not to perform any accurate calculation, but
to make a qualitative argument over the relative differences in scattering and
absorption cross sections of light and heavy water. The goal is to understand
why heavy water is a better choice as moderator material than light water.

The requirement for a neutron emitted as result of fission to give rise to a
new fission reaction, is that it must be absorbed by the fuel and NOT by any
of the non-fissile nuclei in the reactor. Since the fuel absorption cross section
has a 1/v dependence (highest probability of fission for low energy neutrons),
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the task is to bring the initially fast neutrons down in energy to the thermal
range by means of scattering. This is the role of the moderator. The perfect
moderator should have high scattering cross section and zero absorption cross
section.

A higher scattering cross section will give faster neutron slow-down and
therefore increase what is called the resonance escape probability p. One cannot
predict directly the effect on p from the information given in the problem, but
the scattering cross section of light water is only a factor 5 higher than that
of heavy water, while the absorption cross section of light water is 660 times
higher than heavy water. Qualitatively we can therefore argue that the moderate
increase in resonance escape probability due to higher scattering cross section
in light water will be more than cancelled by the massive increase in absorption
cross section (which reduces the thermal utilization factor). Hence heavy water
will give the highest neutron multiplication factor.
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