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Problem 1

• Semi-empirical mass formula (SEMF)

•

B = avA− asA2/3 − aC
Z(Z − 1)

A1/3
− asym

(A− 2Z)2

A
+ δ

Figure 1: Contributions of the various terms in the SEMF to the binding energy
per nucleon

• Volume term: When an assembly of nucleons of the same size is packed
together into the smallest volume, each interior nucleon has a certain
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number of other nucleons in contact with it. So, this nuclear energy is
proportional to the volume.
Surface term: A nucleon at the surface of a nucleus interacts with fewer
other nucleons than one in the interior of the nucleus and hence its bind-
ing energy is less. This surface energy term takes that into account and
is therefore negative and is proportional to the surface area.
Coulomb term: The Coulomb term describes a decrease in the binding
energy due to the Coulomb repulsion among protons in the nucleus. Thus
for a given mass number A, it is less favorable to have a large number
of protons. The Coulomb term dependence on A and Z is found from a
simple model of the nucleus as a spherical charge.
Asymmetry term: Were it not for the Coulomb energy, the most stable
form of nuclear matter would have the same number of neutrons as pro-
tons, since unequal numbers of neutrons and protons imply filling higher
energy levels for one type of particle, while leaving lower energy levels
vacant for the other type. This term is therefore based on that protons
and neutrons occupy different quantum states and accounts for the fact
that if N 6= Z the energy of the nucleus increases and the binding energy
decreases (Pauli exclusion principle).
Pairing term: This is a correction term that arises from the tendency of
proton pairs and neutron pairs to occur. An even number of particles is
more stable than an odd number.

Volume term is most important.

Problem 2

• The nuclear radius of the first nucleus is given by:

R1 = r0A
1/3
1

and the radius for the second nucleus:

R2 = r0A
1/3
2

Then

A2 = A1(
R2

R1
)3 = 12(23) = 96

• The Rutherford-Geiger-Marsden experiment was to send alpha particles
with high kinetic energy (about 5 MeV) through a thin gold film. The
important (and at the time quite surprising) result was that some of the
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alpha particles were scattered through large scattering angles, even 180
degrees. From these experiments a new model of the atom was made: a
very small massive nucleus with electrons around being so light that the
alpha particles which were deflected met the full force of a bare nucleus. It
was assumed that the nucleus carried a charge of +Ze. Using this theory,
the force between the alpha particle (a helium nucleus) and a gold nucleus
is the inverse-square law Coulomb force of electrostatic repulsion.

Problem 3

3a

• The ratio of the mass and proton numbers is Z/A ≈ 0.48. We know that
for heavy stable nuclei this ratio is ≈ 0.41. Thus, we expect this isotope
to be unstable and decay (by emitting protons).

• The Q value can be calculated from the mass differences:

Q = (mEu −mSa −mp)c
2 = (121919.966/c2 − 120980.755/c2 −

938.28/c2)c2MeV = 0.931 MeV

• From the Q value calculated above we can find the speed by using the
following equation: 1

2mpv
2 = Q, which can be written as

v =

√
2 · 0.931MeV

938.272MeV/c2
= 0.045c m/s = 1.34 · 107m/s = 1.34 · 1022 fm/s

In this calculation it is assumed that the proton has all the kinetic energy,
while the daughter nucleus is still at rest. This is a good approximation
given the masses.

A more precise calculation can be obtained if we consider conservation
of momentum: mSavSa +mpv = 0, and find:

v =

√
2Q

mp(1 +mp/mSa)
= 0.045c m/s = 1.34 · 1022 fm/s

The result is the same to the second decimal place.

The nuclear radius is given by R = R0A
1/3 = 1.2 ·1301/3 = 6.079 fm

Finally, the frequency is calculated: f = v
R = 2.20 · 1021s−1
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3b

• The Coulomb potential is given by:

VC(R) =
zZ ′e2

4πεR

where z = 1 and Z’ = 62

The term e2

4πε is found in the attachment and is 1.439976 MeV · fm
Then:

VC(R) =
1 · 62 · 1.439976MeV · fm

6.079fm
= 14.69 MeV

• To find the distance RC we equate the Coulomb potential to the Q value:

Q =
zZ ′e2

4πεRC

Then:

RC =
zZ ′e2

4πεQ
=

1 · 62 · 1.439976MeV · fm
0.931MeV

= 95.9 fm

Alternatively:

RC =
zZ ′e2

4πεQ
= R

VC(R)

Q
= 6.079fm

14.69MeV

0.931MeV
= 95.9 fm

3c

• Since we want to estimate the tunnelling probability we can use the ap-
proximate expression PT = 4e−2κL.
We first need to calculate κ:

κ =

√
2m(VH −Q)

h̄
=

√
2mp(VC/2−Q)

h̄
=

√
2mpc2(VC/2−Q)

h̄c

=

√
2 · (938.28MeV )(14.45/2− 0.931)MeV

6.58217× 10−13MeV · c
= 0.55 fm−1

We then have

2κL = 2× 0.55× (95.9− 6.079)/2 = 49.4

Looking at the right figure, this corresponds to approximately PT =
4e−2κL ≈ 4× 10−21.
(Or calculate this precisely; PT = 1.41× 10−21)
Since the tunnelling probability is very low, the approximation we did in
considering PT = 4e−2κL is good.
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• The decay rate is given by the product of the frequency at which the proton
is at the potential barrier (or gets separated from the parent nuclide) times
the probability of tunnelling through the barrier.
Hence, the decay rate is given by

λ = fPT = 2.2 · 1021s−1 × 4× 10−21 = 8.8 s−1

(λ = 3.1 s−1 if using PT = 1.4× 10−21s−1)

The half-life is:

t1/2 =
ln2

λ
=

ln2

8.8 s−1
= 0.079 s

(0.22 s if accurate)

Problem 4

• Dose from photons:

Dγ = Ψγ(
µen
ρ

)

Dose from protons:

Dp = Φp(
Sc
ρ

)

• 1: The photon field is not significantly attenuated (can be neglected), 2:
the range of electrons is short compared to the diameter of the volume V

• Doses must be equal:

Ψγ(
µen
ρ

) = Φp(
Sc
ρ

)

Fluence and energy fluence is related by:

Ψγ = hνΦγ

and

Ψp = TΦp

The fluence ratio is then:

Φγ
Φp

=
(Sc

ρ )

hν(µen

ρ )
=

7.286

1 · 0.031
≈ 235

Discussion: a factor 235 more photons are required to give the same dose
as for protons.
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Energy fluence:

Ψγ

Ψp
=

(Sc

ρ )

T (µen

ρ )
=

7.286

100 · 0.031
≈ 2.35

Discussion: 1 MeV photons carry a factor 2.35 more energy in the radiation
field than 100 MeV protons if they are to give the same dose.

Problem 5

See posters

Problem 6

6a

• See chapter 10.4 in Krane.
Selection rules:

|Ii − If | ≤ L ≤ Ii + If

(no L = 0)

Parity difference between initial and final states:
∆π = (-1)L for electric transitions (EL)
∆π = (-1)L+1 for magnetic transitions (ML)
(∆π = no: even electric, odd magnetic, ∆π = yes: odd electric, even
magnetic)

• Angular momentum of gamma ray photon must be l = 2, 3, 4, 5 with even
(+) parity.
Possible transitions: E2, M3, E4, M5.
Dominating transition: E2 (lowest permitted multipole usually domi-
nates).

6b

• Description is for example found in Lilley chapter 5.4.4.

• If the detector is far away: detects only primary photons, then it is possi-
ble to calculate the linear attenuation coefficient. If the detector is close:
also detects scattered photons from the absorber.
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• Possible detectors: gas detectors (ionization chamber, proportional counter,
Geiger-Mueller), scintillation detectors (e.g., NaI), semiconductor detec-
tors (e.g., germanium detectors).

Example spectrum in Figure 6.8 in Lilley: An ideal detector would give

a single, sharp full-energy peak for each gamma ray entering the detec-
tor. This is not possible because of background of Compton scattering
which can mask other peaks. Small peaks: backscatter peaks from gamma
rays that were Compton scattered by surrounding materials through large
angles back to the detector. If the energy of the gamma ray exceeds
1.022 MeV it is possible for pair production to occur (”double-escape”
and ”single-escape” peaks appear). But different detector arrangements
give different detector performances. See more in Lilley chapter 6.5.1 and
lab exercises.
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6c

• Photoelectric effect, Compton effect, pair production

• Photoelectric: ∼ Z5, Compton: independent (or very weak dependence),
pair production: ∼ Z3

• Use equations 5.16 and 5.17 in Lilley:

I = I0e
−Nσx = I0e

−µx, µm = µ/ρ

µ = ρµm = 0.141 cm−1 and e−µx = 10−6 → x = 98 cm
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