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Question 1

1a
40
19K21 is an odd-odd nuclide. Spin and parity of the ground state is therefore
determined by the combination of spin and parity of the single (odd) valence
proton (number 19) and the single (odd) valence neutron (number 21).

20 is a magic number in the shell model, corresponding to filled shells:
(1s1/2)2, (1p3/2)4, (1p1/2)2, (1d5/2)6, (2s1/2)2, (1d3/2)4.

⇒ Proton 19 is unpaired in state 1d3/2
⇒ Proton 19 represents spin/parity 3/2+(π = (−1)2 = +1, where l = 2 for d)
⇒ Neutron 21 is unpaired in state 1f7/2

⇒ Neutron 21 represents spin/parity 7/2−(π = (−1)3 = -1, where l = 3 for f)

Total spin: ~I = ~jp+ ~jn ⇒ |jp−jn| ≤ I ≤ |jp+jn| ⇒ |3/2−7/2| ≤ I ≤ |3/2+7/2|
⇒ |2| ≤ I ≤ |5|, i.e., 4 is a possible value.
Total parity: π = πP19πN21 = (+1)(-1) = -1, i.e. negative parity.

Conclusion: 4− is a possible ground state of 40K.

1b

The ground state of 40
20Ca20 is a 0+ state since 40Ca is an even-even nuclide.

Thus, the β− transition is a 4− → 0+ transition.
∆π = yes ⇒ L = 1, 3, .... (only odd numbers)

|Ii − If | ≤ |~L+ ~S| ≤ |Ii + If | |4− 0| ≤ |~L+ ~S| ≤ |4 + 0| ⇒ |~L+ ~S| = 4
For odd L, this is only possible for L = 3 and S = 1.

The β− decay is 3rd forbidden, pure Gamow-Teller.
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1c

Q value for nuclear reaction X(a, b)Y :

Q = (
∑

mi −
∑

mf )c2 = [(mx +ma)− (mb +mY )]c2

For radioactive processes, there is no incoming particle a.

β+ decay: AZX →A
Z−1 X

′ + β+ + ν

Qβ+ = [(mN (AZX)−mN (AZ−1X
′)−m(β+)−m(ν))]c2

We assume m(ν) = 0;m(β+) = me and mA denotes atomic masses:

Qβ+ = [(mA(AZX)− Zme − (mA(AZ−1X
′)− (Z − 1)me)−me]c

2

Qβ+ = [(mA(AZX)−mA(AZ−1X
′) + (Z − 1− Z − 1)me)]c

2

Qβ+ = [(mA(AZX)−mA(AZ−1X
′)− 2me)]c

2

Expressed by mass excess, me, where me(AX) = mA(AX)−A:

Qβ+ = [me(AZX) +A− (me(AZ−1X
′) +A)− 2me)]c

2 = [me(AZX)−me(AZ−1X ′)− 2me)]c
2

= [(−36001− (−37617)µu− 2me]c
2 = [1616 · 10−6 · 931.5− 2 · 0.511]MeV

= [1.505− 1.022]MeV = 0.483 MeV

1d

In the semi-empirical mass formula:

m(AZX) = Zm(1H) + (A− Z)mn −
B

c2

= Zm(1H) + (A− Z)mn −
1

c2
{avA− asA2/3 − aC

Z(Z − 1)

A1/3
− asym

(A− 2Z)2

A
+ δ}

there is a pairing term, δ, which is:
> 0 for even-even nuclei
= 0 for odd A nuclei (even-odd or odd-even)
< 0 for odd-odd nuclei

For a fixed value of A, the expression for m(AZX) will be a second-order polyno-
mial in Z, and for A even (as for 40K) there will be one parabola for odd-odd
nuclei, and another for even-even nuclei.
40K is the most stable of A = 40 odd-odd nuclides (very long half-life; 1.25 ·109

years). Nuclides at the min. point of the odd-odd parabola can decay by either
β− or β+/EC to alternative daughter nuclides of lower mass, in this case 40

18Ar
or 40

20Ca (by β+/EC or β−).
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Question 2

2a

We use the MIRD formalism for internal dosimetry. We start by calculating the
total number of disintegrations in the body as a whole (for adults, we integrate
over 50 years and we have A0 = 500 MBq and t1/2 = 1,8289 h = 6584 s):

Ãbody =

∫ 50years

0

A0e
−λtdt

=
A0

λ
(1− e−λ·50years)

≈ A0

λ
=
A0t1/2

ln2

=
500MBq · 6584s

ln2
= 4.75 · 1012

The assumption ”even distribution of activity” means that the activity in each
organ is given by the fraction of the organ mass MS to the total body mass
Mbody:

Ã(rS) = Ãbody
MS

Mbody

Next we calculate the S-function. There are two branches in this decay, positron
emission (97 %) and electron capture (3 %). In the electron capture process,
most of the reaction energy is carried away with the neutrino, which does not
interact with the body. In other words, the absorbed fraction is close to zero,
and we can ignore this branch. On the other hand, the positron emission deposit
energy in the tissue through a two-step process; (i) first the kinetic energy of the
emitted positron is deposited locally in the source organ; (ii) two annihilation
photons are created and deposit their energy in the tissue according to the
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attenuation law. In total we get:

S(rT ← rS) =
1

MT

∑
i

EiYiΦ(rT ← rS)

=
1

MT

[
211.3keV · 0.97δST + 2 · 511keV · 0.97 · kMT

Mbody

]
= =

205keV

MT
δST +

496keV

Mbody

We use 634keV/3 = 211.3 keV as average positron kinetic energy (reaction
energy Q = 1656keV − 2 · 511keV = 634keV is shared between positron and
neutrino). We have also assumed that the absorbed fraction is proportional to
the mass fraction (=even absorption of radiation), with k as a general absorbed
fraction for the body as a whole. At 511 keV the photon attenuation length is
36 cm, so a realistic absorption fraction is around 0.5. We put all this together:

E =
∑
T

wT
∑
R

wR
∑
rS

Ãbody
MS

Mbody

[
205keV

MT
δST +

496keV

Mbody

]

=
Ãbody
Mbody

∑
T

wT
∑
R

wR

[
205keV +

496keV

Mbody

∑
rS

MS

]

We use Mbody = 75 kg,
∑
T wT = 1,

∑
SMS = Mbody, and wR= 1 for both

positrons and photons:

E =
Ãbody · 701keV

Mbody
=

4.75 · 1012 · 701 · 103 · 1.602 · 10−19

75
= 7.1 mSv

2b

The calculation of ÃrS changes into:

Ã(brain) = 0.6 · Ãbody = 0.6 · 4.75 · 1012 = 2.85 · 1012

Ã(bladder) = 0.4 · Ãbody = 0.4 · 4.75 · 1012 = 1.9 · 1012

Ã(other) = 0

The effective dose becomes:

E =
∑
T

wT
∑
R

wR
∑
rS

ÃrS

[
205keV

MT
δST +

496keV

Mbody

]
=

∑
T

wT

[
Ã(brain) + Ã(bladder)

] [205keV

MT
δST +

496keV

Mbody

]
=

Wbrain

Mbrain
Ã(brain) · 205keV +

Wbladder

Mbladder
Ã(bladder) · 205keV +

[
Ã(brain) + Ã(bladder)

] 496keV

Mbody

4



=
0.01

2kg
2.85 · 1012 · 205keV +

0.04

0.1
1.9 · 1012 · 205keV + 4.75 · 1012

496keV

75kg

= 0.47mSv + 24.96mSv + 5.03mSv = 30.5 mSv

Most of the dose is caused by the positron energy deposition in the bladder.
The result is an overestimation of the effective dose due to: 1) positron energy
in the bladder is mostly absorbed by the urine, not by bladder tissue; 2) the
effect of going to the toilet and clearing the bladder is not included (this can be
done by reducing TD for Ã(bladder) to the time delay until a toilet visit).

Question 3

If we assume the target nuclei number is constant, we have the following ex-
pression for the number of nuclei of the produced isoptope N1 as function of
production rate R and time t:

N =
R

λ
(1− e−λ1t)

We can use this expression to find the required time, τ90, to reach 90 % of the
maximum activity, since A ∝ N :

(1− e−λ1t) = 0.90

τ90 = − ln(0.1)

λ1

Then;

λ1 = − ln(2)

t1/2
= 1.06× 10−4s−1

τ90 = − ln(0.1)

1.06× 10−4
s−1 = 21723 s

21723 s is about 6 hours. You will need to start production around 01:30.

Question 4

See posters about radioactive dating and accelerator mass spectrometry.

Question 5

The situation is described by a travelling wave before and after the wall (with
the same wavelength λ, but different amplitude) and a decaying exponential in
the wall.
The detector measures the transmitted flux. In the limit of small tunneling, we

can write Φt ≈ 4e−2κLΦinc, with κ =
√

2m(V−H)
h2
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Figure 1: Sketch of neutron shielding

Question 6

6a

Put a sheet of paper over the source.

6b

Corrected rate = 1350 - 35 = 1315 min−1

A = 1315/60 = 22 Bq

6c

Find the area of the sphere: A = 4πr2 = 4 × π × 0.12 = 0.126 m2

Total activity = (0.126 × 1315)/1.5 × 10−4 = 1.01 × 106 min−1 = 16800 Bq

6d

The tube is 4.5 times further away, so count rate is 1315/4.52 = 65 min−1

Displayed count rate = 65 + 35 = 100 min−1
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