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Question 1

a) Let the starting activity be A0. Use that t1/2 = 0.218 · 106 y.

A0e
−λt = 0.01A0

−λt = ln 0.01

t = − ln 0.01

λ
= −

ln 0.01 · t1/2
ln 2

≈ 1.45 · 106 y

b) There are two possible solutions to this question, depending on the time scale one looks at (either
solution is given full points). The half-life of the daughter is much shorter than the parent, giving
that λ2 >> λ1. From the formula sheet, we have:

A2 = A0
λ2

λ2 − λ1
(e−λ1t − e−λ2t).

Using λ2 >> λ1 yields:
λ2

λ2 − λ1
≈ 1.

Looking at short time scales we can use the approximation:

e−λ1t ≈ 1,

yielding the equation for the daughter activity approaching secular equilibrium:

A2 ≈ A0(1− e−λ2t).

Alternatively, looking at long time scales, we can instead use the approximation:

e−λ2t ≈ 0,

yielding the equation for the daughter activity once it is in secular equilibrium (equaling the activity
of the parent):

A2 ≈ A0e
−λ1t.

c) Here we need to use the equation for the daughter activity when approaching secular equilibrium.
Use that t1/2 = 12.35 d.

A0(1− e−λ2t) = 0.99A0

1− 0.99 = e−λ2t

−λ2t = ln 0.01

t = − ln 0.01

λ
= −

ln 0.01 · t1/2
ln 2

≈ 82.05 d
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Question 2

a) The Geiger-Müller (GM) detector is a type of gas detector, with a gas placed between two electrodes.
A voltage is applied over the electrodes, such that when incoming radiation ionizes molecules in
the gas, the electrons will migrate towards the positive anode and the positive ions will migrate
towards the negative cathode. The detector usually has a cylindrical geometry to increase the
density of electric field lines towards the central anode. The GM detector uses a higher voltage
than other gas detectors. Due to the high voltage, the electrons will accelerate sufficiently to ionize
further molecules, creating a cascade of ionization. The voltage is also sufficiently high that the
accelerated electrons can excite inner electrons, which in turn emit UV photons when de-excited.
The UV photons have sufficient energy to ionize further molecules in the gas. As a consequence,
a single initial ionization event due to interaction with radiation will cause an ionization cascade
that results in a discharge near the anode. This gives a very high pulse amplitude in the detected
pulse, and high sensitivity to detect radiation. On the other hand, it is not possible to resolve the
energy of the initial ionization event. This type of detector thus works as a radiation counter, but
is not suitable to determine the type of radiation. To avoid secondary discharges as the ions are
neutralized, a quenching gas is usually used. The quenching process is quite slow, so the detector
is not effective at very high count rates.

b) As the neutrally charged neutrons do not interact with electrons in matter, they do not cause direct
ionization of atoms/molecules. Instead neutron detectors detect secondary radiation emitted from
nuclear reactions between the neutrons and the nuclei of the material. Fast neutron detectors
differ from slow neutron detectors because the interaction cross-section for most reactions have a
1/v dependence, and is thus very low at high neutron energies. Fast neutron detectors therefore
use moderating materials with a high scattering cross-section at a large range of energies. One type
of fast neutron detectors uses a scintillating material (e.g. plastics or organic liquids) with a high
content of hydrogen, which is a good neutron moderator. The fast neutrons can transfer sufficient
energy to the hydrogen nuclei (protons) that the recoil protons are released and can be detected
as secondary radiation by the scintillation detector. An alternative design is to have a gas detector
surrounded by a moderating material, where the secondary radiation from neutron interactions is
detected by the central gas detector.

Question 3

a) The SEMF estimates the mass of a nuclide as a function of Z and A. For constant A, the SEMF
takes the form of a parabola (or two offset parabolas for even A). The most stable nuclide for
constant A can thus be found by taking the derivative with respect to Z, and setting it to zero.

M(Z,A) = Zm(1H) + (A− Z)mn

−
[
aV A− aSA

2/3 − aCA
−1/3Z(Z − 1)− asymA−1(A− 2Z)2 + δ

]
/c2

dM

dZ
= m(1H)−mn −

[
−aCA

−1/3(2Z − 1)− asymA−1 · 2(A− 2Z) · (−2)
]
/c2 = 0

(m(1H)−mn)c
2 − aCA

−1/3 − 4asym = −2aCA
−1/3Z − 8asymA−1Z

Zmin =
(mn −m(1H))c2 + aCA

−1/3 + 4asym
2aCA−1/3 + 8asymA−1

b) The terms that are relevant to determine the most stable isobar are:

• Coulomb term: The Coulomb term accounts for the repulsive Coulomb force between the
positively charged protons in the nucleus. As it is a repulsive force it decreases the binding
energy (increases the mass). Each proton sees the effect of the other protons in the nucleus,
hence the dependence on Z(Z-1).

• Symmetry term: The symmetry term describes the tendency of nuclei to have equal numbers
of protons and neutrons. This depends on the quantum mechanical shell model of the nucleus,
where there are discrete energy levels for the nucleons. As protons and neutrons are fermions,
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two equal particles cannot be in identical quantum mechanical states. But protons are not
equal to neutrons, so the protons and the neutrons fill up the energy levels independently. If
there are more of one than the other, it means that the excessive protons/neutrons will need
to reside at higher energy levels, thereby decreasing the total binding energy of the nucleus.

• (Pairing term: The pairing term also depends on quantum mechanical properties of the
nucleons. As fermions, it is energetically favorable for two protons/neutrons to pair up. For
odd A, there will always be one unpaired proton or neutron, and the pairing term does not
contribute to the SEMF. However for even A, there can either be odd numbers of neutrons and
protons, or even numbers of neutrons and protons, where the latter case has higher binding
energy (lower mass). The pairing term does not appear in the equation derived in a), but is
also relevant to determine the most stable nuclide. It is however not necessary to include the
pairing term to get full points on this question.)

c) Inserting numerical values in the equation derived in a) yields:

Zmin =
(8.071− 7.289) + 0.72A−1/3 + 92

1.44A−1/3 + 184A−1

A = 121 ⇒ Zmin ≈ 51.3 ⇒ 121
51 Sb

A = 74 ⇒ Zmin ≈ 32.9 ⇒ 74
33As

d) In the derivation of Zmin we did not take the pairing term, δ, into account. For even A nuclei, this
gives two offset parabolas, where nuclei with odd numbers of protons and neutrons have higher
mass (and are thereby less stable) than nuclei with even numbers of protons and neutrons. The
difference between the parabolas is 2δ = 2 · 34A−3/4 MeV . As the calculated Zmin is close to the
center between 74

32Ge and 74
34Se it is reasonable that both nuclides are stable. 74

33As is however not
stable, due to the pairing term.

Question 4

a) The Coulomb barrier is given by the Coulomb potential between the two nuclei at their closest
possible separation distance before fusing to become one nucleus.

R = R0(2
1/3 + 31/3) = 1.4 · (21/3 + 31/3) ≈ 3.78fm

B =
zZe2

4πϵ0R
=

1 · 2
3.78

· 1.44 MeV ≈ 0.76 MeV

b) For the particles to overcome the Coulomb barrier classically, the temperature must be high enough
that the kinetic energy of the particles equals, or exceeds, the Coulomb barrier.

T =
Tp

kB
=

0.76 MeV

8.6 · 10−11 MeV/K
≈ 8.8 · 109K.

This calculation assumes one particle at rest, and the other with the most probable kinetic energy
at the temperature. Assuming two particles in a head-on collision where each has the most probable
kinetic energy yields half the temperature, 4.4 · 109K. Either assumption is fine - it’s the order of
magnitude that matters.

c) At a temperature of 108K, the most probable kinetic energy of a particle is:

Tp = kB · T = 8.6 · 10−11 · 108 MeV = 8.6 keV.

The closest the particles can get in the classical case is when the Coulomb potential corresponds
to the kinetic energy of the particle. The distance can be estimated by:

d =
zZe2

4πϵ0Tp
=

2

8.6 · 10−3 MeV
1.44 MeV · fm ≈ 335 fm

Again, this calculation assumes one particle at rest, the other at Tp. If we instead assume both
particles at Tp in a head-on collision, the closest they can get classically is 167 fm.
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d) The probability of tunneling through the Coulomb barrier is given by:

P = e−2G

G =

√
2m

h̄2Q

zZe2

4πϵ0

[
arccos

√
x−

√
x(1− x)

]
x = Q/B

In this case, Q corresponds to the kinetic energy of the free particles. B is the maximum height of
the Coulomb barrier, calculated in a). Assuming one particle of 2H at kinetic energy Tp colliding
with one particle of 3He at rest yields:

x =
Tp

B
=

8.6 · 10−3

0.76
≈ 0.0113

arccos
√
x−

√
x(1− x) ≈ 1.36

zZe2

4πϵ0
= 2 · 1.44 MeV · fm = 2.88 MeV · fm√

2m

h̄2Q
=

√
2 · 2 u · 931.5MeV/u

8.6 · 10−3 MeV

1

197 MeV · fm
≈ 3.34 MeV −1 · fm−1

G = 3.34 · 2.88 · 1.36 ≈ 13

P = e−2G ≈ 5 · 10−12

Other reasonable assumptions (e.g. kinetic energy of two particles, or particle with mass of 3He)
are also accepted.

Question 5

a) The Q-value is given by

Q =
(∑

minitial −
∑

mfinal

)
c2.

For β+ decay we start with the parent nucleus, and end up with the daughter nucleus plus one
positron (the neutrino is practically massless and can be ignored in the calculation).

mN (X)−mN (X ′)−me = m(X)− Zme − [m(X ′)− (Z − 1)me]−me

= m(X)−m(X ′)− 2me

Here we can directly use mass excesses in the equation, yielding:

Q = ∆13N −∆13C − 2mec
2 = 5346− 3125− 2 · 511 keV = 1199 keV ≈ 1.2 MeV

b) The accumulated activity is given by:

Ã = A0

∫ ∞

0

e−λtdt = A0

[
e−λt

−λ

]∞
0

=
A0

λ
=

A0t1/2

ln 2

=
600 · 106 Bq · 600 s

ln 2
≈ 5.2 · 1011 disintegrations

Each disintegration gives rise to one positron and one neutrino. The latter will not interact with
the body, and can be ignored in the dose calculation. The positron will share the kinetic energy
with the neutrino, so the average kinetic energy of the positron will be lower than the Q-value of
the decay by some factor, which we here assume to be 1/3. Note that the Q-value in a) was already
calculated for β+ decay and does not need to be corrected by 2me again. However, if you would
instead read out the Q+ value from a decay chart, it only gives the mass difference between parent
and daughter nuclei and needs to be corrected by 2me for β+ decay. All of the kinetic energy of
the positron can be assumed to be deposited in the tissue, as it has a small penetration depth.
After depositing its kinetic energy, the positron will recombine with one electron and release two
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photons with Eγ = 511 keV . The photons will also interact with the tissue and deposit energy,
but as they have a much larger penetration depth, some of the photons will escape from the body.
We can here assume that half of the photon energy is deposited in tissue. Assuming a body weight
of 70 kg, we get:

Sβ+ =
1

MT

∑
EiYIϕi =

1199

3
· 1 · 1 keV · 1.6 · 10−16 J/keV · 1

70 kg
= 0.91 · 10−15J/kg

Sγ = 511 · 2 · 0.5 keV · 1.6 · 10−16 J/keV · 1

70 kg
= 1.17 · 10−15J/kg

The radiation weighting factor for electrons and photons are both wR = 1, and the tissue weighting
factor for the whole body is wT = 1 assuming uniform distribution. This yields the effective dose:

D = wT Ã(wβ+Sβ+ + wγSγ) = 1 · 5.2 · 1011(1 · 0.91 · 10−15 + 1 · 1.17 · 10−15) J/kg ≈ 1.1 mSv

Note that any reasonable assumptions for necessary quantities that were not given in the question
(e.g. whole body mass) are accepted.

c) In the case where we don’t have uniform distribution of the radionuclide, we can calculate the dose
to the different organs separately. Here we need to take into account the different tissue weighting
factors. As the positron has low penetration depth, we can assume that all of the kinetic energy
of the positron is deposited locally in the respective tissue. On the other hand, the photons have
large penetration depth and will deposit their energy also outside of the source tissue. We can
therefore assume a uniform distribution in the body for the photons. This gives:

Dβ+,liver = wliver · 0.2ÃSβ+,liver = 0.04 · 0.2 · 5.2 · 1011 · 400 · 1.6 · 10
−16

1.5
Sv = 0.18 mSv

Dβ+,bladder = wbladder · 0.2ÃSβ+,bladder = 0.04 · 0.2 · 5.2 · 1011 · 400 · 1.6 · 10
−16

0.04
Sv = 6.62 mSv

Dβ+,brain = wbrain · 0.2ÃSβ+,brain = 0.01 · 0.2 · 5.2 · 1011 · 400 · 1.6 · 10
−16

1.3
Sv = 0.05 mSv

Dβ+,rest = wrest · 0.4ÃSβ+,rest

= (1− 0.04− 0.04− 0.01) · 0.4 · 5.2 · 1011 · 400 · 1.6 · 10−16

70− 1.5− 0.04− 1.3
Sv = 0.18 mSv

Dγ = wbodyÃSγ = 1 · 5.2 · 1011 · 1.17 · 10−15 Sv = 0.61 mSv

Dtot = Dβ+,liver +Dβ+,bladder +Dβ+,brain +Dβ+,rest +Dγ

= 0.18 + 6.62 + 0.05 + 0.18 + 0.61 mSv = 7.64 mSv

Multiple choice questions

1) ”The energy levels in the nuclear shell model are equal to the energy levels of electrons in the
atomic model” is false.

2) ”Alpha or beta decay is often followed by gamma decay” is true.

3) ”Heavy charged particles deposit their kinetic energy through many interactions with electrons in
materia” is true.

4) ”Cells are less sensitive to ionizing radiation in a high-oxygen environment” is false.

5) ”In the charged particle equilibrium (CPE) the collision KERMA directly corresponds to the dose
for a photon beam” is true.

5


