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Problem 1. (Points: 10+10+10+10 = 40)

A system of classical interacting spins {σi} in a uniform externally controlled magnetic field B
is defined by the Hamiltonian

H = −J
∑
〈i,j〉

σi σj −B
∑
i

σi

Here, 〈i, j, 〉 denotes a sum over all lattice sites i and their nearest neighbors j, while the spin-variables
take on the values σi ∈ (0,±1,±2). The number of lattice sites is N , and the number of nearest
neighbors is taken to be z. J > 0 is the strength of the spin-spin coupling in the system.

a Show that, by introducing σi = m + δσi and disregarding terms that are quadratic in δσi, the
Hamiltonian may be written on the form

H = JNzm2 −Beff

∑
i

σi

where Beff ≡ B + 2Jzm. Here, |δσi/m| � 1, and 〈δσi〉 = 0. Give a physical interpretation of m and
Beff .

b Witin this approximation, compute the partition function Z =
∑
{σi} e

−βH . Show that the Gibbs
energy is given

G = JNzm2 − N

β
ln (1 + Y (ω + αm))

where ω + αm = βBeff , thus giving an expression for Y(x). β = 1/kBT , kB is Boltzmanns constant,
T is the temperature. Explain on physical grounds why Y (x) = Y (−x). (A check on your result for
Y (x): Y (0) = 4, and Y (x) is an analytic function of x.)

c State the principle by which to determine m. Show that the equation for m is given by

m =
Y ′(ω + αm)

1 + Y (ω + αm)

where Y ′(x) = dY (x)/dx.

d This treatment of the system predicts that it undergoes a phase-transition at B = 0 from a
high-temperature state with no magnetic ordering (a paramagnetic state), to a low-temperature
state with magnetic ordering (a ferromagnetic state). The transition occurs at a critical temperature
Tc. Within the approximation used above, determine Tc. If you did not find Y (x) explicitly in b, you
should still be able to deduce Tc, up to one purely numerical multiplicative constant. In that case,
you are asked to provide an explicit expression for that numerical constant, based on the information
given above.
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Problem 2. (Points: 10+10+10=30)

A d-dimensional ideal quantum system in contact with an infinite particle reservoir is defined by
the Hamiltonian

H =
∑
k

(εk − µ) c†k ck

where c†k and ck are creation and destruction operators respectively of single-particle states with
quantum number k, εk is the single-particle energy of that same state, and µ is the chemical potential
of the system. The grand canonical partition function of the system is given by

Zg =
∏
k

(
1 + e−β(εk−µ)

)
β = 1/kBT , kB is Boltzmanns constant, T is temperature. For εk = h̄c|k|, g(ε) is given by

g(ε) = V
Ωd

(hc)d
εd−1Θ(ε)

where h̄ = h/2π, h is Planck’s constant, c is the speed of light, and Θ(x) is the Heaviside step-
function Θ(x) = 0, x < 0, Θ(x) = 1, x > 0. Ωd is the solid angle in d dimensions.

a Show that the pressure p and density ρ = 〈N〉/V of this system are given by

p =
1

d

Ωd

(hc)d

∫ ∞
0

dε
εd

eβ(ε−µ) + 1

ρ =
Ωd

(hc)d

∫ ∞
0

dε
εd−1

eβ(ε−µ) + 1

b Introduce the fugacity z = eβµ and show that the exact equation of state for this system, βp = F (ρ),
may be written on the following parametric form

βp =
1

λd

∞∑
l=1

bl z
l

ρ =
1

λd

∞∑
l=1

l bl z
l

where it is given that the coefficients bl only depend on (l, d). Thus, give an expression for the
ultra-relativistic thermal de Broglie wavelength λ.

c Compute the second virial-coefficient B2(T ) of this system, defined via

βp = ρ+B2(T ) ρ2 + ....

Give an expression for the dimensionless parameter that determines the importance of the correction
term to the ideal gas case, and thus give a physical interpretation of this correction term.
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Problem 3. (Points: 10+10+10=30)

A system of N one-dimensional anharmonic classical oscillators is described by a Hamiltonian given
by

H =
N∑
i=1

[
p2
i

2m
+

1

2
mω2x2

i + αx4
i

]

The canonical partition function of this system is given by

Z =
1

hNN !

∫
dΓ e−βH

dΓ ≡
N∏
i=1

dpidxi

In this problem, we will treat the anharmonic term as a small correction to the harmonic Hamiltonian.
That, is, we will use the approximation

eax
2+bx4 ≈ eax

2
(
1 + bx4

)

a Within this approximation, show that the partition function of the system is given by

Z =
1

hNN !

(
2π

βω

)N [
1− 3

4

βα

γ2

]N

where γ ≡ βmω2/2. For which temperature range do you expect this to be a valid approximation?

b Compute the internal energy U = 〈H〉 and specific heat CV = (∂U/∂T )V of this system.

c Use the classical equipartition principle to compute the average of the potential energy Up of
the system within the approximation used above

〈Up〉 = 〈
N∑
i=1

[
1

2
mω2x2

i + αx4
i

]
〉
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Useful formulae:

Partition function in the canonical ensemble:

Z = e−βF

Partition function in the Gibbs ensemble:

Z = e−βG

Partition function in the grand canonical ensemble:

Zg = eβpV

〈N〉 =
∂ lnZg
∂(βµ)

.

〈O〉 =
1

Z

1

N !hdN

∫
..
∫
dΓ O e−βH .

∑
k

F (εk) =
∫ ∞
−∞

de g(e) F (e)

g(e) ≡
∑
k

δ(e− εk)

∑
k

=
V

(2π)d
Ωd

∫ ∞
0

dk kd−1

∫
dνr F (|r|) = Ων

∫
dr rν−1 F (r); Ων =

2πν/2

Γ(ν/2)∫ ∞
−∞

dx x2n e−αx
2

=

(
− d

dα

)n√
π

α

Γ(z) ≡
∫ ∞

0
dx xz−1 e−x

Γ(z + 1) = z Γ(z)

ζ(z) ≡
∞∑
l=1

1

lz∫ a

0
dx xν−1 e−x

ν

=
1

ν

∫ aν

0
du e−u∫ ∞

0
dx

xz

ex − 1
= ζ(z + 1) Γ(z + 1)∫ ∞

0
dx x e−x = 1
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Generalized Equipartition Principle:

Let the Hamiltonian of a system be given by H = α|q|ν + H
′
. Here q is a generalized coordinate or

momentum which does not appear in H
′
. Let the partition function be given by

Z =
∫
dq
∫
dΓ

′
e−βH ,

such that we have

〈α|q|ν〉 =
1

Z

∫
dq
∫
dΓ

′
α|q|ν e−βH .

Then we have

〈α|q|ν〉 =
kBT

ν
.

Three-dimensional volume element in spherical coordinates:

d3r = dΩ r2dr; dΩ = dθ sin θ dφ

Here, θ is a polar angle and φ is an azimuthal angle.


