Problem 1. (Points: 10+10+10+10=40)

A classical system of N particles is described by specifying a set of generalized coordinates $\{q_i\}$ and generalized momenta $\{p_i\}$, where $i = 1, ...N$. The dynamics of q_i and p_i is governed by Hamilton's equations

$$
\dot{q}_i = \frac{\partial H}{\partial p_i};
$$
\n $\dot{p}_i = -\frac{\partial H}{\partial q_i};$ \n $\dot{A} \equiv \frac{dA}{dt}$

where H is the Hamiltonian of the system, $H = H({q_i}, {p_i})$. A collection of N copies of a system with the same Hamiltonian H , but in $\mathcal N$ different states, is called an *ensemble*. Furthermore, we define a phase-space as a space spanned by $(q, p) = (\{q_i\}, \{p_i\})$. From N initial states at $t = 0$, the ensemble evolves in phase-space according to Hamilton's equations.

a Show that points in (q, p) , where each point describes one of the $\mathcal N$ systems in phase space, do not cross or disappear.

b For a very large number N, we may consider a density $\rho = \rho(t, \{q_i, p_i\})$ of points in phase-space as a continuous function of its variables. Use the result of \underline{a} to show that there is a continuity equation for ρ given by

$$
\frac{d\rho}{dt} \equiv \frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0,
$$

where $\vec{\nabla}$ is a gradient in phase-space (q, p) and $\vec{v} \equiv (\dot{q}, \dot{p})$ is a velocity in phase-space.

c Use Hamilton's equations to show that the continuity equation for ρ may be written on the form

$$
\frac{\partial \rho}{\partial t} + \{\rho, H\} = 0
$$

where

$$
\{A, B\} \equiv \sum_{i} \left(\frac{\partial A}{\partial q_i} \frac{\partial B}{\partial p_i} - \frac{\partial A}{\partial p_i} \frac{\partial B}{\partial q_i} \right).
$$

d For a stationary state, we have $\partial \rho / \partial t = 0$. Show that in this case, we may set

$$
\rho(\{q_i, p_i\}) = \rho(H(\{q_i, p_i\})).
$$

Give a physical interpretation of ρ . Explain how this equation facilitates a computation of macroscopically measurable quantities from a microscopic description of a system given by H .

$TFY4230$ 10. August 2018 P age 2 of 5 Problem 2. (Points: 10+10+10=30)

A system of classical interacting spins on a 3D simple cubic lattice $\{S_i\}$ in a uniform externally controlled magnetic field along the x-axis, $\mathbf{B} = B\hat{x}$, is defined by the Hamiltonian

$$
H = -J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - \mathbf{B} \cdot \sum_i \mathbf{S}_i
$$

Here, $\langle i, j \rangle$ denotes a sum over all lattice sites i and their nearest neighbors j, while the spin-variables take on the values $\mathbf{S}_i = (S_{xi}, S_{yi}) = S[\cos(\phi_i), \sin(\phi_i)],$ with $\phi_i \in [0, 2\pi)$. Here, ϕ_i is the angle of the spin S_i with respect to the x-axis. The number of lattice sites is N. $J > 0$ is the strength of the spin-spin coupling in the system. In a so-called mean-field approximation, we set $S_i = m + \delta S_i$ and disregard terms that are quadratic in δS_i .

a Show that in the mean-field approximation, the Hamiltonian may be written on the form

$$
H = JNz\mathbf{m}^2 - \mathbf{B}_{\text{eff}} \cdot \sum_i \mathbf{S}_i
$$

and provide an expression for \mathbf{B}_{eff} . Here, $\langle \delta \mathbf{S}_i \rangle = 0$.

b Show that the Gibbs energy is given by,

$$
G = JNz\mathbf{m}^2 - \frac{N}{\beta} \ln (I_0(x))
$$

$$
I_0(x) \equiv \frac{1}{2\pi} \int_0^{2\pi} d\phi \ e^{ix\phi}
$$

and give an expression for x. Here, $\beta = 1/k_B T$, k_B is Boltzmanns constant, T is the temperature. Compute G in the limit $T \to 0$.

c This treatment of the system predicts that it undergoes a phase-transition at $B = 0$ from a high-temperature state with no magnetic ordering (a paramagnetic state), to a low-temperature state with magnetic ordering (a ferromagnetic state). The transition occurs at a critical temperature T_c . Find T_c .

$TFY4230$ 10. August 2018 $Page 3$ of 5 Problem 3. (Points: 10+10+10=30)

The virial-expansion for the pressure p of a real gas is given by

$$
\beta p = \sum_{l=1}^{\infty} B_l(T) \rho^l
$$

Here, $B_l(T)$ are virial-coefficients, $\beta = 1/k_B T$, k_B is Boltzmann's constant, and T is the temperature. The canonical partition function for a general classical system is given by

$$
Z = \frac{Q_N}{\lambda^{3N} N!}
$$

with $\lambda \equiv 1/$ √ $\overline{2\pi mk_BT}$, where m is the mass of the particles in the system. Here, Q_N is the so-called configurational integral, given by

$$
Q_N \equiv \int \dots \int d^3 r_1 \dots d^3 r_N \ e^{-\beta \Phi(r_1, \dots, r_N)}
$$

where $\Phi(r_1, ..., r_N)$ is the interaction potential between the particles in the system.

 $\underline{\mathbf{a}}$ Compute $B_1(T)$.

 $\underline{\mathbf{b}}$ Show that for $l \geq 2$, we have

$$
B_l(T) = \frac{1}{(l-1)!} \frac{\partial^l(\beta p/\rho)}{\partial \rho^l}
$$

 \underline{c} An equation of state for a system of particles is given by

$$
p = \frac{Nk_B T}{V - Nb} - a\left(\frac{N}{V}\right)^2
$$

Here, b is a parameter that sets the volume of a hard core repulsion in the system, and a is a parameter that sets the magnitude of a long-range weak attraction between particles. Compute all virial coefficients $B_l(T)$ for this system.

TFY4230 10. August 2018 Page 4 of 5 Useful formulae:

Partition function in the canonical ensemble:

$$
Z = e^{-\beta F}
$$

Partition function in the Gibbs ensemble:

$$
Z = e^{-\beta G}
$$

Partition function in the grand canonical ensemble:

$$
Z_g = e^{\beta p V}
$$

Thermodynamic identity

$$
TdS = dU + pdV
$$

Helmholtz free energy

$$
F = U - TS
$$

$$
dF = dU - TdS - SdT
$$

Generalized Equipartition Principle:

Let the Hamiltonian of a system be given by $H = \alpha |q|^{\nu} + H'$. Here q is a generalized coordinate or momentum which does not appear in H' . Let the partition function be given by

$$
Z = \int dq \int d\Gamma' e^{-\beta H},
$$

such that we have

$$
\langle \alpha | q |^{\nu} \rangle = \frac{1}{Z} \int dq \int d\Gamma' \alpha |q|^{\nu} e^{-\beta H}.
$$

Then we have

$$
\langle \alpha |q|^\nu \rangle = \frac{k_B T}{\nu}.
$$

Zeroth order modified Bessel functions $I_0(x)$

$$
I_0 \equiv \frac{1}{2\pi} \int_0^{2\pi} d\phi \ e^{x \cos(\phi)}
$$

Power series in x :

$$
I_0(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{2^{2m} (k!)^2}
$$

Small x :

$$
I_0(x) = 1 + \frac{x^2}{4} + \frac{x^4}{64} + \dots
$$

Large x :

$$
I_0(x) \approx \frac{1}{\sqrt{2\pi x}} e^x
$$

Gauss' theorem

Let S be a closed surface encompassing a volume V in some space of arbitrary dimension. Let $\hat{\mathbf{n}}dS$ be a directed surface element of S pointing *out* of the volume V. Then, for any vector \vec{F} in this space, we have

$$
\iiint\limits_V (\nabla \cdot \mathbf{F}) \, \mathrm{d}V = \iint\limits_{S(V)} \mathbf{F} \cdot \hat{\mathbf{n}} \, \mathrm{d}S
$$