
NTNU
Institutt for Fysikk

Contact during the exam: Tor Nordam
tor.nordam@ntnu.no

Final exam

2016
TFY4235/FY8904

Computational Physics

Exam time: May 9, 09.00 - May 12, 23.00 (Norwegian time)
Allowed help: Anything and anyone

The answer to this exam should take the form of a report in pdf format. Additionally,
you should submit your report from Exercise 1 as a pdf, and the source code for both
the exam and the exercise as a single zip file (use filenames or folders to make it clear
what source code belongs to the exam and the exercise). These three files should be
uploaded through the digital exam page (see information on the course webpage1).
If you for any reason have trouble using the upload function, you should as a backup
solution send the reports and code to me by email. Any extra information during
the exam (typos, clarifications, etc.) will be posted on the course webpage.

Write your name on the report, and include an acknowledgements section near the
end, where you include the names of anyone you have collaborated closely with.
Collaboration is encouraged, so feel free to discuss the problems with anyone, but
you should write all your code (with one exception, see Section 3.1) and your report
yourself. There is no page limit on the report from the exam. You do not need to
include theory from the assignment, but you should write your report in such a way
that someone with access to both the assignment and your report can reproduce your
work. Make sure to document what you have done in those cases where parameters
are left open for you to decide.

1 Introduction

The system you will study is a two dimensional square box, with boundaries x =
0, x = 1, y = 0, y = 1, which is filled with a gas made up of hard disks (also
called particles). See Fig. 1 for an illustration. Particle i will be characterised
by six variables: position (xi = [xi, yi]), velocity (vi = [vxi, vyi]), radius (ri) and
mass mi. Particles always move in a straight line with constant velocity, except
when they collide either with a wall, or another particle. Collisions are treated as
instantaneous.

1http://amokk.phys.ntnu.no/TFY4235

Page 1 of 15



You will use an approach known as “event driven simulation” (see Ref [1] for a
nice detailed introduction). The steps in the simulation will be approximately the
following:

• Initialisation:

– For each particle, calculate if and when it will collide with all other par-
ticles, and with the walls, and store all the collision times.

– Identify the earliest collision.

• Loop:

– Move all particles forward in time (straight lines, constant velocity) until
the earliest collision.

– For the particle(s) involved in the collision, calculate new velocities.

– For the particle(s) involved in the collision, calculate if and when they
will next collide with all other particles, and with the walls, and store the
collision times.

– Having resolved the collision, identify the new earliest collision, and check
if it is still valid (if the particle(s) involved have collided with something
since the collision was calculated, it is no longer valid). If the collision is
invalid, discard it and move to the next earliest. Once a valid collision is
found, repeat the steps in the loop.

The reason this approach is called “event driven” is that time is always moved forward
until the next “event”, instead of using a fixed time step. In order to make this
procedure efficient, you will use a data structure known as a “priority queue”. This
will allow you to maintain a list of all future collisions, in such a way that it is easy
to identify the next collision.

2 Collisions

There are two types of collisions: collision between a particle and a wall (see Fig. 2)
and collision between two particles (see Fig. 3). We ignore the possibility of simul-
taneous collisions between more than two objects. The two types of collisions must
each be resolved in different ways.

Page 2 of 15



Figure 1: A gas of 1000 hard disks.

2.1 Collision between a particle and a wall

First, we need to calculate at what time a particle will collide with a wall. This is
relatively straightforward. Since particles move in a straight line, except when they
collide, any particles with velocity different from zero will eventually collide with a
wall (unless it collides with something else first). The time is found by treating x
and y separately, and in each case calculating the time until the center has travelled
a distance equal to the distance from the center to the wall, minus the radius of the

r1

v1
v1'

Figure 2: Collision between a particle and a wall.

Page 3 of 15



particle. The time until particle i collides with a vertical wall is given by

∆t =


(1− ri − xi)/vxi if vxi > 0

(ri − xi)/vxi if vxi < 0
∞ if vxi = 0

, (1)

and similarly the time until collision with a horizontal wall is given by

∆t =


(1− ri − yi)/vyi if vyi > 0

(ri − yi)/vyi if vyi < 0
∞ if vyi = 0

. (2)

When a particle actually collides with a wall, we need to calculate the velocity after
the collision. For a particle with velocity vi = [vxi, vyi], colliding with a vertical wall,
the velocity after the collision, v′

i is given by:

v′
i = [−ξvxi, ξvyi] (3)

and similarly for a horizontal wall:

v′
i = [ξvxi,−ξvyi] (4)

Here, ξ is known as the restitution coefficient, and represents the degree of inelasticity
in the collision. If ξ = 1, the collision is fully elastic, and no energy is lost.

2.2 Collision between two particles

In order to find the time of a future collision between two particles, i and j, we need
to solve an equation to find out if their trajectories will ever bring them into contact.
Contact between particles i and j happens when the distance between their centers,
Rij, is equal to ri + rj. Let x′

i = [x′i, y
′
i] and x′

j = [x′j, y
′
j] be the positions of particles

i and j at the time of collision, and let the collision happen at time t+ ∆t. Then we
have

R2
ij = (x′j − x′i)2 + (y′j − y′i)2. (5)

The positions of the particles at time t+ ∆t are given by

x′
i = xi + vi∆t

x′
j = xj + vj∆t

(6)

Page 4 of 15



r1

r2

v1

v2

v2

v1'

'

Figure 3: Collision between two particles.

where xi and xj are the positions at time t, and vi and vj are the velocities at time
t (the velocities remain constant until the collision). Inserting Eq. (6) into Eq. (5),
we get an equation for ∆t which only has a solution if the particles will collide:

∆t =


∞ if ∆v ·∆x ≥ 0
∞ if d ≤ 0

−∆v ·∆x+
√
d

∆v ·∆v
otherwise

, (7)

where

∆x = [xj − xi, yj − yi] (8)

∆v = [vxj − vxi, vyj − vyi] (9)

d = (∆v ·∆x)2 − (∆v)2((∆x)2 −R2
ij). (10)

Here, if the time until collision of particles i and j is ∆t = ∞, those particles will
never collide (on their current trajectories), and that collision can be disregared.

When the particles collide, their new velocities are given by

v′
xi = vxi +

(
(1 + ξ)

mj

mi +mj

∆v ·∆x

R2
ij

)
∆x

v′
xj = vxj −

(
(1 + ξ)

mi

mi +mj

∆v ·∆x

R2
ij

)
∆x

(11)

Page 5 of 15



Again, ξ is the restitution coefficient. If ξ = 1, the collision is fully elastic, and no
energy is lost. In the opposite case, if ξ = 0, the collision is fully inelastic. Note that
momentum is still conserved.

2.3 Inelastic collisions

If ξ < 1, the collisions are inelastic, and energy is lost at each collision. This can lead
to a situation known as “inelastic collapse”, where the number of collisions per time
goes to infinity. This is obviously a problem for the event driven approach, since all
collisions taking place before a time t′ must be resolved before the simulation can
reach time t′.

One possible way to deal with this problem is known as the TC model[2]. The
central idea of the model is the observation that an infinite number of collisions in a
finite amount of time is clearly unphysical, since a collision in reality takes a finite
amount of time, whereas in the event driven approach described here, collisions are
assumed to be instantaneous. The solution is to introduce a “duration of contact”,
tc (from which the model takes its name). Any collisions that happen within a time
tc after a previous collision involving the same particle(s) are then assumed to be
perfectly elastic (ξ = 1). To implement this, simply store the last collision time for
each particle. When resolving a collision, check if the any of the involved particle(s)
collided at a time less than tc ago.

3 Data Structures

Depending on your choice of language and personal preference, you may or may not
want to go for an object oriented approach. In any case, you will at the very least
have to use a priority queue to keep track of future collisions, and potential future
collisions will have to certain information associated with them.

3.1 Priority Queue

A priority queue (also sometimes called a “heap queue”) is a data structure that
implements (at least) the following methods:

Page 6 of 15



• enqueue, a method that takes an element and inserts it into the queue (also
known as push or heappush, and probably other names as well),

• pop, a method that returns the smallest (or in some implementations, the
largest) element in the queue (the method is also known as heappop, and
probably other names).

There are several different ways to implement a priority queue, but the essential
features for efficient operation are that the time to execute the operations pop and
enqueue must be O(log n), where n is the number of elements currently on the queue.
You are not required to implement the priority queue from scratch yourself. See the
Appendix for some more information.

3.2 Collision

The future collisions will have to be stored with the following attributes:

• the time of the collision

• the two colliding entities (one particle and either a wall or another particle)

• the collision count of the involved particle(s) when the collision was calculated.

If the collision count is no longer the same at the time of the collision, the involved
particle(s) have collided with something else in the meantime, and the collision is
discarded as invalid. The priority queue must be able to order collision events based
on their time.

4 Before you begin

Before you begin solving the problems, I strongly recommend that you run through
some test cases to make sure you have implemented everything correctly. Some tests
are suggested in the Appendix, and you can come up with more tests yourself. The
idea is to check a situation where you know what the solution should be, and confirm
that your program produces the expected result. There is also some general advice
included the Appendix, which you may find useful.

Page 7 of 15



5 Problems

Problem 1

In this problem, we will start simple by looking at two particles only. Set up a
system with one large and heavy particle (r1 = 0.1, m1 = 106) in the middle of the
box, and one small and light (r2 = 0.001, m2 = 1) particle hitting it with velocity
in the positive x direction only. The distance from the x axis to center of the small
particle is called the impact parameter, b. Run the simulation for different values of
the impact parameter, and make a graph showing the scattering angle as a function
of b/R12, where R12 = r1 + r2. The scattering angle is the angle between the velocity
of the small particle before and after the collision. In this problem, use ξ = 1.

Problem 2

Next, we will investigate the speed distribution of a gas of hard disks. Initialise
a system with a large number of particles (between 500 and 2000 particles should
be fine, but if you go much beyond that, the simulations may become impracti-
cally slow). Give the particles (uniformly distributed) random positions (make sure
they do not overlap with each other or the walls), and random velocities given by
v = [v0 cos θ, v0 sin θ], where v0 is the same for all particles, and θ is a uniformly
distributed random angle between 0 and 2π. In this problem, use ξ = 1.

Make a histogram showing the initial speed distribution (which should be a delta
function, since all particles have the same speed). Let the system run until it has
reached equilibrium (average number of collisions per particle� 1), and make a new
histogram of the speed distribution. In order to get enough samples for a smooth
looking histogram, you will probably need to include the speeds at more than one
instant (unless you have a very large number of particles). See the Appendix for
some information.

Page 8 of 15



Problem 3

Here, we will simulate a mixture of two gases with different mass per particle. Repeat
the setup of Problem 2, but now give half the particles mass m = m0, and the other
half m = 4m0. Plot the histogram showing the speed distribution separately for
the two particle masses, both initially and after the system has reached equilibrium.
Calculate also the average speed and the average kinetic energy separately for the
two particle masses. In this problem, use ξ = 1.

Problem 4

Repeat the setup of Problem 3. For this problem, you will write output at short
intervals (average number of collisions per particle � 1 during an interval). At each
output step, calculate the average kinetic energy over all particles, the average over
those particles with mass m = m0, and the average over those with mass m = 4m0.
Run the simulation until the average number of collisions per particle reaches 10 or 20
or so, then make a plot showing the development of the three averages as a function of
time. Repeat this procedure for ξ = 1, ξ = 0.9 and ξ = 0.8. See the comment about
the TC model in the Appendix. The point of this task is to demonstrate that with
ξ = 1, the system reaches equilibrium, and the average kinetic energy (and hence the
temperature) of the two gases is the same. When ξ < 1, however, the system does
not reach equlibrium, and the two gases do not have the same temperature.

Problem 5

For the last problem, you will use your code to study crater formation following a
projectile impact. Set up a system with somewhere between 500 and 5000 particles
(depending on what you can simulate within a reasonable amount of time). One
particle will be the projectile, and will have larger mass and radius than the others.
Give it an initial position of x0 = [0.5, 0.75], and a downwards velocity v0 = [0,−v0].
The remaining particles will form a “wall”. Give them zero initial velocity, and
uniformly distributed random positions within the area bounded by x = 0, x = 1,
y = 0, y = 0.5, i.e. occpying the lower half of the box. Make sure they do not overlap
with each other or the walls. These particles should all have equal mass and radius.
You will have to decide on the radius based on the number of particles, try adjusting
the radius to give a packing fraction of approximately 1/2 (or just a little higher) in

Page 9 of 15



the area occupied by the small particles. Describe the procedure you use to set the
initial positions.

As starting values, you may set the mass of the projectile to 25 times the mass of
the smaller particles, and the radius of the projectile to 5 times the radius of the
smaller particles. Set ξ = 0.5, and give the projectile a speed of v0 = 5. Run the
simulation until only 10% of the initial energy remains (see Fig. 4 for an example).
See comments about the TC model in the Appendix.

The point of this task is to investigate the effect of the input parameters on the
formation of the crater. Hence, we need to have some way to quantify the size of the
crater. One option could be to compare the positions of the particles in the “wall”
before and after the simulation, and saying that those particles that are still at the
same (or very nearly the same) position are unaffected. The number of affected
particles then gives an indication of crater size. Feel free to implement a different
approach if you prefer.

Finally, the task is to do a parameter scan across one (or more, if you have time,
although that’s not required) of the following input parameters:

• mass of projectile,

• speed of projectile,

• radius of projectile,

• ξ.

Run the simulation for some different values (10 different ones, for example) of the
chosen parameter, and plot the size of the crater as a function of the parameter.
If you choose to do a scan in ξ, you will probably have to think about a different
criterion for stopping the simulation, as it may take a very long time before only
10% of the energy remains. Note that for lower values of ξ, inelastic collapse may be
more likely to occur.

This last problem is somewhat more open ended than the others. You will be judged
on the quality of you work, not so much on the results, since I’m not quite sure what
the results should be.

Page 10 of 15



Figure 4: Example of crater formation.

Page 11 of 15



Appendix

A Priority Queue

For a good introduction to priority queues, see Ref. [3]. It has a detailed discussion of
the required steps in the implementation, as well as a downloadable implementation
in java (the link called MinPQ.java). In python, check out the module heapq (part
of the standard library). For a list of implementations in different languages, have
a look at Ref [4]. I would also recommend a web search for priority queue or heap
queue and the name of your favourite language.

B Test Cases

It is highly recommended to run through some test cases, as these can help uncover
small errors in the implementation. These are some suggestions, feel free to use
others.

B.1 One particle

Confirm that:

• with ξ = 1, a particle hitting a wall straight on bounces back at the same speed
in the opposite direction,

• with ξ = 1, a particle hitting a wall at an angle obeys the law of reflection
(θi = θr),

• with ξ = 1, a particle starting out with velocity v = [v0, v0] should hit all four
walls once before coming back to where it started,

• with ξ = 0, a particle hitting a wall comes to a complete stop.

Page 12 of 15



B.2 Two particles

Confirm that:

• with ξ = 1, two particles with equal mass and the same speed in opposite
directions, hitting each other straight on, should bounce back with the same
speed in the opposite direction.

• with ξ = 1, two particles with equal mass and the same speed in opposite
directions, hitting each other with a collision parameter b = (r1 + r2)/

√
2 (see

Problem 1), should bounce back with the same speed at right angles to the
directions they had before the collision.

• with ξ = 0, two particles with equal mass and the same speed in opposite
directions, hitting each other straight on, should both come to rest.

B.3 Many particles

Confirm that:

• with ξ = 1, the total energy remains exactly constant through the simulation.

C Some hints

These are some observations I have made, while solving the problems included in the
exam. Feel free to use or ignore any of the hints as you see fit.

C.1 Output

You may find it useful to plot snapshots of your system, for pedagogical and/or
debugging reasons. While it is easy to plot the gas of particles with a typical scatter
plot routine, be aware that the size of each marker in a scatter plot is typically not
specified in the same units as the positions on the plot. Some experimentation may
be required to get decent looking results.

In order to get output at fixed time intervals in an event driven simulation, you
may find it convenient to specify a separate output timestep. At every event step,

Page 13 of 15



check if the next output is earlier than the next collision. If it is, then move all the
particles forward in time until the output step, do the output (plotting or velocities
or whatever). Repeat until the next collision happens earlier than the next output,
and then resolve the collision as usual. Some approach like this will be required if
you want to write output when no collisions have occured.

To turn a series of images into a video, check out the handy command line tool
mencoder. However, do not spend too much time making nice looking plots and
videos. That is not the most important part of the exam.

C.2 Statistics

To get good statistics on the speeds and energies, you will probably need to include
speeds from more than one snapshot in time. Two possible approaches can be to run
several systems (an ensemble), or to take several snapshots from one system. In the
latter case, make sure you let enough time pass between the snapshots (number of
collisions per particle between snapshots � 1). Otherwise, the samples will not be
independent.

C.3 Parallelisation

The part of the code that takes up the most of the time is likely to be the function
to calculate if and when a particle will collide with any other particles. While it is
certainly possible to parallelise this calculation, it could easily be more trouble than
it is worth. A simpler approach to parallelisation is to run several copies of your
program at the same time (as many as you have cores in your computer). Each copy
could then simulate one member of an ensemble, in order to improve statistics, or
one set of parameters, as in the crater formation problem.

C.4 TC model

With ξ < 1, inelastic collpse may occur, but it is not guaranteed to do so. From my
experience, it seems like you may be able to run through all the problems in this
exam with tc = 0, which is equivalent to not using the TC model at all. However,
if you run into trouble, and the number of collisions per time suddenly increases
dramatically, try figuring out what the average time between collisions is, and set tc

Page 14 of 15



to something smaller than this. You may have to experiment a little. Remember to
document what you have done in the report.

References

[1] http://algs4.cs.princeton.edu/61event/

[2] Luding, S. and McNamara, S., “How to handle the inelastic collapse of a dis-
sipative hard-sphere gas with the TC model”, Granular Matter 1, pp.113-128,
1998.

[3] http://algs4.cs.princeton.edu/24pq/

[4] https://rosettacode.org/wiki/Priority queue

Page 15 of 15


