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NTNU Institutt for fysikk

Contact during the exam:
Professor Ingve Simonsen
Telephone: 9 34 17 or 470 76 416

Exam in TFY4235/FY8904 Computational Physics
May 08, 2017

09:00

Allowed help: Alternativ A

This problem set consists of 19 pages.

This exam is published on Monday, May 8 at 09:00 hours. You can work on your solution
till Thr. May 11, 2017 at 23:00 (“the deadline”). Before the deadline you should submit
your final report in the pdf-format and a zip-file containing the documented source code via
the system “Inspera”. For the filenames please use <lastname>_TFY4235_report.pdf and
<lastname>_TFY4235_code.zip; for those of you taking the course using the the FY8904
code, replace the TFY code by this code. Since “Inspera” also is new to me, a detailed
account of how the submission shall be done, and potential updates, will be given on the
course homepage no later than a day before the deadline However, my understanding is that
you shortly after the exam has started will receive an email on how and where to submit your
report and computer code. Prior to the deadline you are also expected1, to send the final
report to me at email Ingve.Simonsen@ntnu.no with subject TFY4235 of FY8904.2

There are no constraints on the aids you may want to use in connection with this exam,
including discussing it with anybody. However, the report and the computer code you will
have to write yourself. Please attach your computer codes as appendices to the report. Give
as a footnote the names of your collaborators during the exam. The report may be written
in either Norwegian (either variants) or in English.

Should you run short on time, you are advised to spend the time to do properly what you
do instead of following a strategy of doing a little bit here-and-there.

Information posted during the exam, like potential misprints, links to papers, extended
deadline etc. will be posted on the web-page of the course at http://web.phys.ntnu.no/

~ingves/Teaching/TFY4235/#Exam and/or http://web.phys.ntnu.no/~ingves/Teaching/
TFY4235/Exam/. It is your responsibility to check this information regularly!

1Useful in the unlikely event that something should go wrong with the digital submission via “Inspera” (or
you cannot get it to work properly).

2Warning: If your email is too large, the gmail system, to which I also forward my email, may notify you
that the message was too large to by delivered to my gmail account. This means that your message was
received successfully by the ntnu email system, if you were not informed otherwise.

http://web.phys.ntnu.no/~ingves/Teaching/TFY4235/#Exam
http://web.phys.ntnu.no/~ingves/Teaching/TFY4235/#Exam
http://web.phys.ntnu.no/~ingves/Teaching/TFY4235/Exam/
http://web.phys.ntnu.no/~ingves/Teaching/TFY4235/Exam/
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There are no formal requirements for the format of the report in addition to what was
said above. The report should explain what you have been doing, your results, and how
you interpret these results. Details should be included to the extent that we as graders can
follow your way of reasoning. General background theory that, for instance, can be found i
textbooks, is not needed in the report. It is documentation of your work we are interested in!
Remember that if you have written an original and clever code for solving the problem, but
are not able to explain it well in the report, it is hard to give you full credit.

I plan to have office hours from 13:00-16:00 on Monday May 08 in case you have questions
to the problems.

Good luck to all of you!
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Problem 1

Your suggested solution for Assignment no 3 [1] should be handed in as part of the report.
It will count 15% towards the final grade of the course.

Problem 2

This takehome exam is motivated from the quantum mechanical scattering of atoms from
surfaces. Atom scattering at thermal energies is one of the most sensitive experimental
techniques for obtaining detailed information about the structure of surfaces. This is partly
due to the wavelength of such atoms beams, such as Helium beams, being comparable to
the interparticle spacings in solids, and the energies are of the order of the maximum crystal
phonon energies [13, Ch. 8]. Thus the scattering of such atoms is ideally suited for studies of
both surface structure and surface vibrations.

In general, the scattering of an atom beam from a surface is a complex many-body
quantum mechanical problem due to the interaction between the atoms in the beam and
the particles that constitute the surface. At low energies, this problem is often simplified
by describing the presence of the surface by an associated potential, so that the original
scattering problem reduces to finding solutions of the Schrödinger equation. The detailed
nature of the potential, and how it can be constructed, is a topic by itself that we here will
not go into: see for instance Ref. [13] for details.

It should be noted that even in the case of elastic scattering from a rigid ordered surface,
that is a pure single-body problem, the extended nature of the potential and the lack of
symmetry means that the solution method will not always be simple. In the case of inelastic
scattering from a vibrating surface, we are faced with a many-body problem which must be
treated with a variety of approximation methods. Disorder on the surface can contribute both
to the elastic and inelastic scattering. Such scattering manifest itself as a diffuse background
intensity as well as by reducing the intensity of the diffraction peaks.

Below we will first start by presenting some useful background theory. Thereafter, the
actual tasks that you are asked to solve in this takehome exam are outlined using the concepts
and notation introduced in the theory section.

2.1 Motivation from quantum mechanics

The objective of the scattering calculation for the elastic problem is to solve the Schrödinger
equation [

− ~2

2m
∇2 + V (x)

]
ψ(x) = Eψ(x), (1)

where V (x) denotes the potential at spatial position x, E denotes the energy of the atoms,
and ψ(x) represents the wave function of the atoms (or particles) of mass m.

The scattering geometry that we will consider is depicted in Fig. 1. The surface is placed
in the vicinity of the horizontal plane x3 = 0 and we will denote the surface profile function
by ζ(x‖) where x‖ = (x1, x2, 0). Initially, the surface profile function will not be required to
have any particular form, i.e. it can be ordered, disordered of anything in between. Only
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Figure 1: Schematics of the scattering geometry considered: (left) disordered and (right)
periodic systems.

later will we specialize to the case for which the surface profile function is a periodic function
(as illustrated in the right panel of Fig. 1).

For simplicity, it will be assumed that the medium below the surface is rigid, that is, it
is a “hard wall”, so that the quantum mechanical potential that appears in Eq. (1) reads

V (x) =

{
0 x3 > ζ(x‖)

∞ x3 ≤ ζ(x‖)
. (2)

This has the consequence that the wave function will vanish when x3 ≤ ζ(x‖), so that, in
particular, we at the surface have the Dirichlet boundary condition

ψ(x|ω)|x3=ζ(x‖)
= 0. (3)

On the other hand, in the region far above the surface, x3 > ζ(x‖), the wave function consists
of a free incoming particle and a sum of scattered waves.

When the potential (2) is introduced into Eq. (1) one finds that in the region above the
surface, the Schrödinger equation can be written in the form[

∇2 +
ω2

c2

]
ψ(x|ω) = 0, (4)

where we have defined

ω2

c2
=

2mE

~2
. (5)

Equation (4) has the form of a Helmholtz equation where ω represents the anuglar frequency
of the wave and c its velocity. The Helmholtz equation is obtained by taking the Fourier
transform over time of the scalar wave equation (or equivalently assuming a harmonic time
dependence of the wave). The original quantum mechanical scattering problem is therefore
equivalent to the scattering of classical scalar waves. Hence, if you feel more comfortable
about thinking about the classical scattering problem, as we will do below, you are free to do
so in the following.
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2.2 Theory

In this section we outline some useful theoretical results. The discussion is somewhat detailed
and the formulas may seem somewhat overwhelming at first. However, we stress that to
numerically solve the problems to be presented later, it is not required that you can follow
every individual step of the mathematical derivation. Therefore, when you read this section
focus on getting an overview of the material presented and try to understand the physics of
the scattering problem. Should you still struggle to understand the problem, please do not
hesitate to ask!

2.2.1 Scattering theory

The incident wave we will take as a plane wave (the incident atom beam) and we write it as

ψinc(x|ω) = exp [ik · x] . (6)

Here k represents the wave vector of the scalar wave. When the incident wave from Eq. (6) is
substitute into the Helmholtz equation (4) one finds that it satisfies this latter equation only
when the following condition is fulfilled

k · k =
ω2

c2
. (7)

The expression in Eq. (7) is known as the dispersion relation of the scalar wave and it should
always be satisfied. To make sure that this is the case, we write the wave vector k in the form

k = k‖ ± α0(k‖, ω)x̂3 (8)

with

α0(k‖, ω) =


√

ω2

c2
− k2‖ k2‖ <

ω2

c2

i
√
k2‖ −

ω2

c2
k2‖ ≥

ω2

c2

. (9)

Here the component of the wave vector that is parallel to the x3-plane has been denoted k‖
while the vertical component of the same wave vector (that is perpendicular to the x3-plane)
we write k3 ≡ ±α0(k‖, ω). Moreover, the perpendicular component is treated as a function
of the independent variables k‖ and ω and the functional form of α0(k‖, ω) is dictated by
the dispersion relation (7). When k‖ < ω/c, the associated wave is said to be propagating,
while on the other hand when k‖ > ω/c we have an evanescent wave (that is decaying in the
positive x3-direction).

With Eqs. (8) and (9) it follows that the incident wave can be written in the form

ψinc(x|ω) = exp
[
ik‖ · x‖ − iα0(k‖, ω)x3

]
. (10)

It should be noted that the form of the incident field automatically satisfies the dispersion
relation and is therefore a solution of the Helmholtz equation (4). We have chosen a negative
sign in front of the α0 term; physically this signifies that the incident wave is propagating in the
negative x3-direction (see Fig. 1), i.e. downwards towards the surface located at x3 = ζ(x‖),
when k2‖ < ω2/c2 (as we will assume here).
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The scattered field we write in the form

ψsc(x|ω) =

∫
R2

d2q‖

(2π)2
R(q‖|k‖) exp

[
iq‖ · x‖ + iα0(q‖, ω)x3

]
, (11)

that is a superposition of upward plane waves. Here R(q‖|k‖) are the unknown (and to be
determined) scattering (or reflection) amplitudes of the scalar wave from incident lateral wave
vector k‖ into the scattered lateral wave vector q‖ (see Fig. 1). Note that the q‖-integration

is over the whole R2 plane, i.e. q1 and q2 can take on any real value in the interval (−∞,∞).
The total field in the region x3 > max ζ(x‖) is the sum of the incident and scattered field

from Eqs. (10) and (11) so that

ψ(x|ω) = ψinc(x|ω) + ψsc(x|ω)

= exp
[
ik‖ · x‖ − iα0(k‖, ω)x3

]
+

∫
R2

d2q‖

(2π)2
R(q‖|k‖) exp

[
iq‖ · x‖ + iα0(q‖, ω)x3

]
.

(12)

From Fig. 1 it is observed that the incident lateral wave vector k‖ is related to the polar
and azimuthal angles of incidence (θ0, φ0) by

k‖ =
ω

c
sin θ0(cosφ0, sinφ0, 0); (13a)

similarly, the lateral scattered wave vector is in the propagating regime (q‖ < ω/c) related to
the angles of scattering (θs, φs) via

q‖ =
ω

c
sin θs(cosφs, sinφs, 0). (13b)

It is straight forward to show from Eq. (9) that for propagating waves one has

α0(k‖, ω) =
ω

c
cos θ0 (14a)

α0(q‖, ω) =
ω

c
cos θs. (14b)

On the other hand, if we are in the evanescent regime, the relations in Eqs. (13) and (14) no
longer holds, at least not for real angles.

2.2.2 Rayleigh equation for rigid surfaces

In the expression for the total field, Eq. (12), the scattering amplitudes R(q‖|k‖) are unknown.
In order to determine these amplitudes we impose the boundary conditions (3). To this end,
we will use an approximation known as the Rayleigh hypothesis [14, Ch. 4] which amounts to
assuming that the expression in Eq. (12) for the total field can be used all the way down to
the surface. This approximation is expected to be good when the local slopes of the surface
are not too large [14, Ch. 4] but the precise region of validity of this approximation is still
not known for a general surface profile function.

Under the assumption of the Rayleigh hypothesis, imposing the boundary condition (3)
on the total field from Eq. (12) gives the relation∫

R2

d2q‖

(2π)2
R(q‖|k‖) exp

[
iq‖ · x‖ + iα0(q‖, ω)ζ(x‖)

]
= − exp

[
ik‖ · x‖ − iα0(k‖, ω)ζ(x‖)

]
.

(15)
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We now introduce the integral representation

I(γ|Q‖) =

∫
R2

d2x‖ exp
[
−iγζ(x‖)

]
exp

[
−iQ‖ · x‖

]
(16a)

or equivalently

exp
[
−iγζ(x‖)

]
=

∫
R2

d2Q‖

(2π)2
I(γ|Q‖) exp

[
iQ‖ · x‖

]
. (16b)

The function I(γ|Q‖) is a Fourier type integral of exp
[
−iγζ(x‖)

]
and it encodes the surface

profile function ζ(x‖).

If Eq. (15) is multiplied by the factor exp
[
−ip‖ · x‖

]
where p‖ is an arbitrary lateral wave

vector, integrating the resulting expression over x‖, using the delta function representation

δ(x‖) =

∫
d2Q‖

(2π)2
exp

(
iQ‖ · x‖

)
, (17)

and using Eq. (16b), one is led to the following equation∫
R2

d2q‖

(2π)2
I
(
−α0(q‖, ω)

∣∣p‖ − q‖

)
M(p‖|q‖)R(q‖|k‖) = −I

(
α0(k‖, ω)

∣∣p‖ − k‖

)
N(p‖|k‖),

(18)

where M(p‖|q‖) and N(p‖|k‖) are known functions. Equation (18) is known as the Rayleigh

equation and it is an inhomogenious integral equation for the scattering (or reflection) am-
plitude R(q‖|k‖). It is this type of equation that we will solve in this takehome exam. Note
that the surface profile enters only via the integrals I(γ|Q‖).

Dirichlet and Neumann surfaces: For a Dirichlet scattering problem, for which the total
field on the surface vanishes, the functions M(p‖|q‖) and N(p‖|k‖) are particularly simple as
they are both unity, i.e.

M(p‖|q‖) = 1 N(p‖|k‖) = 1. (19)

A Neumann surface, on the other had, is defined by the boundary condition that the
normal derivative of the total field vanishes on the surface, or in terms of mathematics,

∂nψ(x|ω)|x3=ζ(x‖)
= 0, (20)

where ∂n denotes the normal derivative of the surface at point x‖. In this case the corre-
sponding Rayleigh equation can still be written in the form of Eq. (18) but with different
forms for the following functions [11]

M(p‖|q‖) =
ω2

c2
− p‖ · q‖

α0(q‖, ω)
(21a)

and

N(p‖|k‖) = −
ω2

c2
− p‖ · k‖

α0(k‖, ω).
(21b)
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2.2.3 Rayleigh equation for periodic rigid surfaces

In the discussion in the previous subsubsection, the surface profile function was in principle
arbitrary. However, in this subsection our main concern will be surface profile ζ(x‖) that are
doubly periodic functions of x‖. We express this by requiring that

ζ
(
x‖ + x‖(`)

)
= ζ

(
x‖
)
, (22)

where {x‖(`)} are the translation vectors of a two-dimensional Bravais lattice [9]. They are
expressed by

x‖(`) = `1a1 + `2a2, (23)

where a1 and a2 are the two noncollinear primitive translation vectors of the lattice, while
`1 and `2 are any positive or negative integers, or zero, which we denote collectively by
` = (`1, `2). The area of a primitive unit cell of this lattice is ac = |a1 × a2|. In this work our
main concern will be a square lattice for which a1 = a x̂1 and a2 = a x̂2 (and thus ac = a2).

It will be convenient for what follows to introduce the lattice that is reciprocal to the one
defined by Eq. (23). Its lattice sites are given by

G‖(h) = h1b1 + h2b2, hi ∈ Z, (24)

where the primitive translation vectors of this lattice are defined by the equations

ai · bj = 2πδij i, j = 1, 2, (25)

with δij denoting the Kronecker symbol. In Eq. (24), h1 and h2 are any positive or negative
integers, or zero, which we denote collectively by h. For a square lattice of parameter a the
primitive reciprocal lattice vectors are b1 = (2π/a) x̂1 and b2 = (2π/a) x̂2.

Due to the periodicity of the surface profile function [Fig. 1], ζ(x‖) the field in the vacuum
must satisfy the Floquet-Bloch condition [16], i.e.

ψ
(
x‖ + x‖(`), x3|ω

)
= exp

[
ik‖ · x‖(`)

]
ψ
(
x‖, x3|ω

)
. (26)

Consequently, we rewrite the amplitudes R(q‖|k‖) of the scattered scalar field in the form

R(q‖|k‖) =
∑
G‖

(2π)2 δ
(
q‖ − k‖ −G‖

)
r(k‖ + G‖|k‖). (27)

In writing Eq. (27) we have replaced summation over h by summation over G‖. For a periodic
surface, we write Eq. (16a) in the form

I
(
γ|Q‖

)
=
∑
`

∫
ac(`)

d2x‖ exp
(
−iQ‖ · x‖

)
exp

[
−iγζ(x‖)

]
, (28)

make the change of variable x‖ = x‖(`) +u‖ and use the the periodicity property (22) of the
surface to obtain

I
(
γ|Q‖

)
=
∑
`

∫
ac

d2u‖ exp
[
−iQ‖ ·

(
x‖(`) + u‖

)]
exp

[
−iγζ(u‖ + x‖(`))

]
=
∑
`

exp
[
−iQ‖ · x‖(`)

] ∫
ac

d2u‖ exp
(
−iQ‖ · u‖

)
exp

[
−iγζ(u‖)

]
. (29)
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Now, taking advantage of the relation∑
`

exp
[
−iQ‖ · x‖(`)

]
=
∑
G‖

(2π)2

ac
δ
(
Q‖ −G‖

)
, (30)

enables us to write Eq. (29) in the form

I
(
γ|Q‖

)
=
∑
G‖

(2π)2 δ
(
Q‖ −G‖

)
Î
(
γ|G‖

)
, (31)

with

Î
(
γ | G‖

)
=

1

ac

∫
ac

d2x‖ exp
(
−iG‖ · x‖

)
exp

[
−iγζ(x‖)

]
. (32)

When the expansions (27) and (31) are substituted into the Rayleigh equation (18), the
equation satisfied by the amplitudes

{
r(k‖ + G‖|k‖)

}
is obtained in the form∑

K‖

(2π)2δ
(
p‖ −K‖

) ∑
K′

‖

Î
(
−α0(K

′
‖)
∣∣K‖ −K ′‖

)
M
(
K‖|K ′‖

)
r(K ′‖|k‖)

= −
∑
K‖

(2π)2 δ
(
p‖ −K‖

)
Î
(
+α0(k‖)

∣∣K‖ − k‖
)
N
(
K‖|k‖

)
. (33)

In writing this equation, we have defined the two lateral wave vectors

K‖ = k‖ + G‖ K ′‖ = k‖ + G′‖, (34)

and summations over G‖ and G′‖ have been replaced by summations over K‖ and K ′‖,

respectively. Equating coefficients of delta functions on both sides of Eq. (33) gives∑
K′

‖

Î
(
−α0(K

′
‖)
∣∣K‖ −K ′‖

)
M(K‖|K ′‖) r(K

′
‖|k‖) = −Î

(
α0(k‖)

∣∣K‖ − k‖
)
N(K‖|k‖).

(35)

Equation (35) is the final form of the periodic surface Rayleigh equation. The set of solutions
of this equation {r(K ′‖|k‖)} describes the reflection of an incident scalar wave of lateral wave

vector k‖ that is scattered by the periodic surface ζ(x‖) into reflected waves characterized by
the lateral wave vector K ′‖ = k‖ + G′‖.

2.3 The I-integral

In order to completely define the Rayleigh equation for a periodic surface, Eq. (35), the Î-
integrals that appear in this equation have to be calculated. From the definitions of these
integrals, Eq. (32), it should be apparent that to do so one is required to assume a specific
form for the periodic surface profile function that we write as

ζ(x‖) =
∑
`

S
(
x‖ − x‖(`)

)
. (36)
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Figure 2: The truncated cone and cosine forms assumed for the surface profile in the modeling.

Here S(x‖) represents the part of the surface profile that is repeated inside each unit cell. In
this work we will carry out numerical calculations assuming several forms of this function,
some of which are rotational symmetric about the x3-axis, and the forms having this symmetry
are depicted in Fig. 2.

The first form of S(x‖) that we will consider is a double period sinusoidal profile of period
a defied by

S(x‖) =
ζ0
2

[
cos

(
2πx1
a

)
+ cos

(
2πx2
a

)]
, (37)

where ζ0 ≥ 0 is an amplitude. This surface profile function is obviously not rotational
symmetric. However, the advantage of this profile function is that the Î-integral (32) that is
associated with it can be calculated in closed analytic form. With G‖(h) defined by Eq. (24)
with h = (h1, h2), a direct calculation gives

Î
(
γ|G‖(h)

)
= (−i)h1 Jh1

(
γζ0
2

)
(−i)h2 Jh2

(
γζ0
2

)
, (38)

where Jn(·) represents the Bessel function of first kind and order n.

The second form of S(x‖) that we will consider is the truncated cone of in-plane cir-
cular cross-section characterized by top and base radii ρt and ρb (see Fig. 2), respectively.
Mathematically this function can be defined as

S(x‖) =


ζ0 0 ≤ x‖ < ρt

ζ0
ρb−x‖
ρb−ρt ρt ≤ x‖ < ρb

0 ρb ≤ x‖

, (39)
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where 0 ≤ ρt ≤ ρb, the amplitude ζ0 ≥ 0 and x‖ = |x‖|. This profile is rotational symmetric.

Instead of calculating directly the Î-integral associated with the truncated cone, we will
start with a simpler calculation for which the surface profile function is a the circular pillar
of height ζ0 and radius ρ0. The corresponding profile function is defined as a special case of
a Eq. (39) obtained when ρt = ρb = ρ0. In this case and with Eq. (32), a direct calculation
leads to

Î
(
γ|G‖

)
=

1

ac

∫
ac

d2x‖
{

1 + exp
[
−iγζ(x‖)

]
− 1
}

exp
(
−iG‖ · x‖

)

= δG‖,0 +
1

ac

ρ0∫
0

dx‖ x‖

π∫
−π

dφ [exp (−iγζ0)− 1] exp
(
−iG‖x‖ cosφ

)

= δG‖,0 +
2π

ac
[exp (−iγζ0)− 1]

ρ0∫
0

dx‖ x‖J0(G‖x‖) (40)

where δG‖,0 denotes a Kronecker delta function. In obtaining this result, a factor of one
has been added and subtracted from the exponential function containing the surface profile
function so that the function exp

[
−iγζ(x‖)

]
−1 vanishes whenever the surface profile function

ζ(x‖) vanishes. Moreover, in arriving at Eq. (40) polar coordinates have been introduced
and we have used that the Bessel function of the first kind and order zero has the integral
representation [15]

J0(z) =
1

2π

π∫
−π

dθ exp (iz cos θ) . (41)

This function enters into the expressions for Î
(
γ|G‖

)
due to the rotational symmetry of

the profile function S(x‖) = S(x‖). The integral that appears in Eq. (40) can be evaluated
analytically with the results that [12]

Î
(
γ|G‖

)
= δG‖,0 + 2π

ρ20
a2

[exp (−iγζ0)− 1]
J1(G‖ρ0)

G‖ρ0
, (42)

where J1(·) denotes the Bessel function of the first kind and order one and we have used that
ac = a2 for a square lattice. We note that when G‖ρ0 = 0 in Eq. (42) then J1(G‖ρ0)/(G‖ρ0) =
1/2.

We are now prepared to calculate the Î-integral for the truncated cone; the procedure
that we will follow mimics how the result in Eq. (42) was obtained. By introducing Eq. (39)
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into Eq. (32) and using Eq. (41) one obtains

Î
(
γ|G‖

)
= δG‖,0 +

2π

ac

ρb∫
0

dx‖ x‖J0(G‖x‖)
[
exp

{
−iγζ(x‖)

}
− 1
]

= δG‖,0 +
2π

a2
[exp (−iγζ0)− 1]

ρt∫
0

dx‖ x‖J0(G‖x‖)

+
2π

a2

ρb∫
ρt

dx‖ x‖J0(G‖x‖)

[
exp

(
−iγζ0

ρb − x‖
ρb − ρt

)
− 1

]
. (43)

The two first terms on the right-hand-side of Eq. (43) are given by the right-hand-side of
Eq. (42) if ρ0 is replaced in this expression by ρt. To calculate the last integral of Eq. (43),
we Taylor expand the exponential function that appears in the integrand and integrate the
resulting expression term-by-term to obtain

Î
(
γ|G‖

)
= δG‖,0 + 2π

ρ2t
a2

[exp (−iγζ0)− 1]
J1(G‖ρt)

G‖ρt

+
2π

a2

∞∑
n=1

(−iγζ0)n

n!

ρb∫
ρt

dx‖ x‖J0(G‖x‖)

(
ρb − x‖
ρb − ρt

)n
. (44)

If now the change of variable

u‖ =
ρb − x‖
ρb − ρt

(45)

is made in the last term in Eq. (44) one obtains after some rewriting

Î
(
γ|G‖

)
= δG‖,0 + 2π

ρ2t
a2

[exp (−iγζ0)− 1]
J1(G‖ρt)

G‖ρt

+ 2π
ρb − ρt
a2

∞∑
n=1

(−iγζ0)n

n!

1∫
0

du‖
[
ρb − (ρb − ρt)u‖

]
J0
(
G‖
[
ρb − (ρb − ρt)u‖

])
un‖ .

(46)

The integrals that appear in this equation have to be evaluated numerically, and in most
cases, only a few terms are needed in the sum to obtain convergent results. It is readily
checked that the expression in Eq. (46) in the limit ρt → ρb reduces to that of Eq. (42), as it
should.

The final form of the surface profile function for which we will perform calculations is the
(truncated) cosine surface profile (see Fig. 2) defined as

S(x‖) =

ζ0 cos

(
πx‖

2ρ0

)
0 < x‖ < ρ0

0 x‖ > ρ0

. (47)
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We now use this expression in Eq. (32) in order to obtain the corresponding expression for
the integral Î. The result is

Î
(
γ|G‖

)
= δG‖,0 +

1

ac

ρ0∫
0

dx‖ x‖

π∫
−π

dφ
{

exp
[
−iγζ(x‖)

]
− 1
}

exp
(
−iG‖x‖ cosφ

)

= δG‖,0 +
2π

a2

ρ0∫
0

dx‖ x‖J0(G‖x‖)
{

exp
[
−iγζ(x‖)

]
− 1
}

= δG‖,0 +
2π

a2

∞∑
n=1

(−iγ)n

n!

ρ0∫
0

dx‖ x‖J0(G‖x‖) ζ
n(x‖), (48)

where Eq. (41) and a Taylor series expansion of exp
[
−iγζ(x‖)

]
have been used in the first

and last transmission, respectively. The integrals present in Eq. (48) have to be calculated
numerically, and sufficiently many terms were included to reach convergence.

2.3.1 Efficiencies of the diffracted Bragg beams

From the knowledge of the reflection amplitudes the diffraction efficiencies of the scattered
beam can be calculated. They are measurable quantities and in this section we will derive
expressions for them.

To this end, we start by calculating the total, time-averages power flux that is incident
and scattered by the surface. The magnitude of the total, time-averaged power flux incident
on the surface (by a particle of mass m) is defined as

Pinc = − ~
m

Im

∫
d2x‖

[
ψ∗inc(x|ω)

∂ψinc(x|ω)

∂x3

]
x3>max ζ(x‖)

(49)

Here (and in later equations) the superscript asterisk denotes complex conjugation. The
minus sign that appears on the right-hand side of Eq. (49) compensates for the fact that the
incident flux is negative. With the form of the incident field from Eq. (6) it follows readily
that

Pinc =
~
m
L1L2α0(k‖, ω), (50)

where L1 and L2 are the lengths of the mean scattering surface along the x1- and x2-axis,
respectively.

Similarly, the magnitude of the total, time-averaged scattered power flux is with the use
of Eq. (11) found to be [11]

Psc =
~
m

Im

∫
d2x‖

[
ψ∗sc(x|ω)

∂ψsc(x|ω)

∂x3

]
x3>max ζ(x‖)

=
~
m

Im

∫
d2q‖

(2π)2
iα0(q‖, ω)

∣∣∣R(q‖|k‖)
∣∣∣2 exp

[
−2Imα0(q‖, ω)x3

]
=

~
m

∫
q‖<ω/c

d2q‖

(2π)2
α0(q‖, ω)

∣∣∣R(q‖|k‖)
∣∣∣2 . (51)
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The reason that the q‖-integration that appears in this expression is limited to the domain
q‖ < ω/c is a direct consequence of the imaginary value that appears in the first line of
Eq. (51). When q‖ > ω/c, we are evanescent in vacuum and α0(q‖) is purely imaginary.
When this happens, the integrands in Eq. (51) are real and will therefore not contribute to
Psc.

The periodicity of the surface profile function ζ(x‖) is taken into account via the relations
in Eq. (27). From these expressions one obtains the relation∣∣∣R(q‖|k‖)

∣∣∣2 =
∑
G‖

(2π)2δ
(
q‖ − k‖ −G‖

)
r∗(k‖ + G‖|k‖)

×
∑
G′

‖

(2π)2δ
(
q‖ − k‖ −G′‖

)
r(k‖ + G′‖|k‖)

=
∑
G‖

[
(2π)2δ

(
q‖ − k‖ −G‖

)]2 ∣∣r(k‖ + G‖||k‖)
∣∣2

=
∑
G‖

(2π)2δ (0) (2π)2δ
(
q‖ − k‖ −G‖

) ∣∣r(k‖ + G‖|k‖)
∣∣2 , (52)

which when combined with Eq. (51), gives

Psc =
~
m
L1L2

∑
G‖

′
α0(|k‖ + G‖|)

∣∣r(k‖ + G‖|k‖)
∣∣2 . (53)

Here we have used a prime on the summation symbol to indicate that the sum over G‖ only
runs over values for which |k‖ +G‖| < ω/c. Equation (53) demonstrates that each diffracted
beam contributes independently to the scattered flux.

When the scattered power flux is normalized by the power flux of the incident beam, Pinc,
one gets

Psc

Pinc
=
∑
G‖

′
e
(
k‖ + G‖|k‖

)
, (54)

where

e
(
k‖ + G‖|k‖

)
=
α0(|k‖ + G‖|)

α0(k‖)

∣∣r(k‖ + G‖|k‖)
∣∣2 . (55)

The quantity e
(
k‖ + G‖|k‖

)
is known as the diffraction efficiency of incident beam of lateral

wave vector k‖ into the Bragg beam characterized by k‖ + G‖. This quantity only has a
physical meaning for those values of G‖ for which |k‖ + G‖| < ω/c; this situation is often
referred to as open diffraction channels.

Since there is no absorption in the scattering from a rigid surface (or hard wall), all power
incident on it must be scattered. Hence, the conservation of energy dictates that

U =
∑
G‖

′
e
(
k‖ + G‖|k‖

)
≡ 1. (56)
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This energy conservation condition is useful for testing, for instance, the quality of numerical
simulations results. It is a necessary but not sufficient condition for the correctness of the
simulation results.

The reflectivity of the periodic surface is obtained from the diffraction efficiency when
G‖ = 0;

R(k‖) = e(k‖|k‖). (57)

2.4 Grating equation

When an incident wave of lateral wave vector k‖ is scattered from a periodic surface, the
possible scattered lateral wave vectors are given by

q‖(h) = k‖ + G‖(h), (58)

with h = (h1, h2, 0), hi ∈ Z, and for a square lattice of period a [see Eq. (24)]

G‖(h) = h1
2π

a
x̂1 + h2

2π

a
x̂2. (59)

The result expressed by Eq. (58) is know as the grating equation, and from the preceding
discussion, it should be apparent that it holds. This equation predicts for which directions
the different diffraction orders (Bragg beams) will appear. Note that the this equation only
gives the positions, that only depends on the period, and not the intensity of the diffractive
orders.

Alternatively, when the grating equation (58) is combined with Eq. (13b) the angles of
scatterings (θs, φs) for the various diffractive orders can be derived.

2.5 Numerical solution of the Rayleigh equation for periodic surfaces

The purpose of this section is to present some ideas and comments on how to solve numerically
the Rayleigh equation for a periodic surface, Eq. (35). You may chose to follow, or not follow
the advises given here.

In order to obtain a numerical solution of the Rayleigh equation for a periodic surface
profile function, Eq. (35), we start by restricting the indices h1 and h2 that appear in the
wave vector G′‖ [see Eq. (24)] to the intervals −H ≤ hi ≤ H, (i = 1, 2) , where H is a positive

integer.3 This implies that the number of terms in the summation in Eq. (35) is reduced
from an infinite number to a finite number. Therefore, we only have a finite set of unknown
scattering amplitudes r(k‖ + G′‖|k‖) to solve for. To numerically calculate these scattering

amplitudes, the Rayleigh equation (35) is converted into a linear system of equations. To this
end, r(k‖ + G′‖|k‖) is mapped into a vector by adapting a certain storage convention for its

elements that depends on both components of the lateral scattered wave vector k‖+G′‖. With

the storage convention assumed, the elements M(K‖|K ′‖) times the prefactor appearing in
the Rayleigh equation are mapped onto a matrix that forms the left-hand-side of the linear

3If you are concerned that using a rectangular cut-off in reciprocal G‖-space can introduce an anisotropy,
you may restrict the sum over G′

‖ (or K′
‖) for which G′

‖ < H. This is somewhat more complex to implement
than using a rectangular domain but the implementation is more efficient since in total a lower number of
modes are included in the calculation.
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system. The linear system obtained in this way is then solved by standard routines from
Lapack [8, 10]. The solution vector is then mapped back onto r(k‖ + G′‖|k‖), which is the
quantity that we search, and from which physically observables like diffracted efficiencies can
be calculated.

In order to obtain accurate simulation results, the value of H used in the calculations has
to be sufficiently high so that the maximum wave number resolved in the simulations is well
into the evanescent regime. One has to increase the value of H until the diffraction efficiencies
of the propagating modes do no longer depend on the value of H being used, i.e. the cut-off
in reciprocal space.

A better way of evaluating the quality of the obtained numerical results is to check that
the simulations respect energy conservation when applied to a scattering system where none
of the media involved have absorption. In our case there is no absorption so this means we
have to show that Eq. (56). This equation is expected to be satisfied within an error that is
no more than a fraction of a percent. It is up to you to chose the numerical parameters to
make sure that this is the case.

To evaluate the Î-integrals, one will need to calculate the Bessel functions Jn(z) for
complex values of the argument z [7, 17]. Routines for evaluating these functions can be
found in Netlib [2] and the Fortran routines that provide them are called cbesj and zbesj

for the single and double precision version, respectively. These functions are part of the
general purpose (Fortran) library SLATEC Common Mathematical Library [3]. They are
also provided by the TBCI templated C++ numerical library [4] (as wrappers to the Fortran
routines).

It might be useful to note the following properties of the Bessel functions of the first kind
and integer order n [5]

J−n(z) = (−1)nJn(z), (60)

and that for purely complex arguments z = ix, where x is real, one has [5]

Jn(ix) = (i)nIn(x). (61)

Here In(x) denotes the modified Bessel function of the first kind and order n (for the real
argument x). For real arguments x the functions Jn(x) and In(x) are provided by the GNU
Scientific Library [6] which is written in C and has wrappers to several programming lan-
guages.

2.6 Exam questions

This exam is devoted to the numerical solution of the Rayleigh equation for the scattering of
a scalar beam from a periodic surface, Eq. (35). We will here concentrate on the Dirichlet
problem if nothing is said to indicate otherwise.

We will denote the wavelength of the incident beam by λ; it is related to the angular
frequency via ω/c = 2π/λ. Since there is no absorption in our scattering problem, the
dependence on the period a and profile height ζ0 are only via the ratios a/λ and ζ0/λ.

You are asked to address the following tasks:
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1. Write a code that solves the Rayleigh equation for a periodic Dirichlet surface, Eqs. (35)
and (19), given an incident lateral wave vector k‖ defined by the angles of incidence
(θ0, φ0). Assume in your implementation that the surface profile function is the double
periodic sinusoidal function (37). You are free to make assumptions for the parameters
of the problem that you find convenient.

Do several consistency checks to motivate that your implementation is likely to be
correct. For instance, such test could include the flat surface limit ζ0 → 0, the test of
energy conservation, and symmetry of the scattering problem when k‖ → −k‖.

It is expected that the most challenging part of the implementation will be to consis-
tently set up the linear system of equations that needs to be solved in order to calculate
the scattering amplitudes r(k‖ + G′‖|k‖). Therefore, pay particular attention to this
part of the implementation.

When you in the report present numerical results here and for later tasks, always specify
explicitly all the numerical parameters used in the simulations. In this case, this in
particular applies to the value of H being used (or equivalently the value of maxiGi).

2. Calculate the quantity U defined in Eq. (56), as a function of increasing values of the
surface profile amplitude ζ0 assuming normal incidence [k‖ = 0]. For what value of ζ0/λ
do you start seeing U departure from unity? This signals that the Rayleigh hypothesis
may no longer be satisfied.

In your calculations assume (a) a/λ = 0.5; and (b) a/λ = 3.5. The surface profile
function is still assumed to have the double periodic sinusoidal form.

3. Under the assumption

k‖ =
ω

c
sin θ0 x̂1, G‖(m) = m

2π

a
x̂1, m ∈ Z

calculate the diffraction efficiencies

em(θ0) ≡ e(k‖ + G‖(m)|k‖)

as functions of the the polar angle of incidence θ0 ∈ [−90◦, 90◦] for all open (or propa-
gating) diffractive channels4 when (a) a/λ = 0.5; and (b) a/λ = 3.5. For the parameters
under (b) also present the the “angular dependence” of the energy conservation condi-
tion U(θ0). Note that G‖(m) is always in the plane of incidence (the x1x3-plane).

For the height of the profile ζ0/λ assume a value for which you found U ≈ 1. The profile
ζ(x‖) is still of the double periodic sinusoidal form.

4. Repeat the calculations from Task 3 but now for the truncated cone (39). Choose some
reasonable value of ρb and ρt (with a/2 > ρb > ρt). You may have to adjust the value
for ζ0/λ in order to get convergent results. Comment your findings.

5. Redo the calculations from Task 4 but now for the (truncated) cosine profile (47).
Choose suitable values for the constants a/2 > ρ0 > 0 and ζ0 > 0

4This means for all values of m ∈ Z for which |K‖(m)| < ω/c.
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6. Discuss how you would have solved the scattering problem if the surface profile S(x‖)
inside a unit cell only was available numerically and not analytically as has been the
case in the calculations done above. For this task no calculations are asked for, only a
discussion.

7. (Optional but for extra credit) For the Neumann scattering problem, repeat the calcula-
tions from Tasks 3–5. Comment your results by comparing them to the corresponding
findings for the Dirichlet problem.
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