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Eksamen/Exam 20.12.2000 - Løsningsforslag/suggested solution:

Problem 1

a) The charge conservation J⋅−∇=
∂
∂

t
ρ  follows from the two Maxwell's equations

t∂
∂+=×∇ EJB 000 εµµ  and 0ερ=⋅∇ E , and the identity ( ) .0≡×∇⋅∇ B  We then

have: ( ) ( ) .00000 ≡�
�

�
�
�

�

∂
∂+⋅∇=⋅∇

∂
∂+⋅∇=×∇⋅∇

tt
ρµεµµ JEJB  QED!

With J = σE, the charge conservation yields ρ
ε
σσρ

0

−=⋅∇−=
∂
∂ E

t
  and then ρ obeys

the simple, first-order, differential equation: .ln
0ε

σρ −=
∂

∂
t

 Direct integration yields

the following solution for t ≥ 0: ��
�

�
��
�

�
−= tt

0
0 exp)(),(

ε
σρρ rr , where ρ0(r) is the charge

distribution at time t = 0.  We see that any given initial charge distribution very soon

decays to zero.

Free charges are not found in the interior of conducting materials because the

repulsion of free charges of equal signs causes them to move to the surface of the

material.  At the same time the attraction of free charges of opposite signs causes them

to combine and partly neutralize each other.

b) The fields are given by
t

V
∂
∂−−∇= AE  and AB ×∇= .  From ( ) 0≡×∇⋅∇ A  and

0≡∇×∇ V  the following pair of Maxwell’s equations are automatically satisfied:

( ) 0=×∇⋅∇=⋅∇ AB   and 
tt

V
∂
∂−=×∇

∂
∂−∇×−∇=×∇ BAE )( . QED!

From the last two of Maxwell's equations we obtain:

0ερ=⋅∇ E � ( ) 0
2 ερ=⋅∇

∂
∂−∇− A
t

V  �

                      ( ) .0
2 ερ−=⋅∇

∂
∂+∇ A
t

V (A)
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 and:  
t∂

∂+=×∇ EJB 000 εµµ �
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t 0002
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00
2 µεµµε . (B)

c) A gauge transform is any change of the potentials V and A that does not change the

resulting fields: 
t

V
∂
∂−−∇= AE  and AB ×∇= .

Substituting the Lorentz gauge-condition, 
t
V
∂
∂−=⋅∇ 00εµA , into equations (A) and

(B) above, we directly obtain the given wave equations:

          .   and  02

2

00
2

02

2

00
2 J AA µµεερµε −=

∂
∂−∇−=

∂
∂−∇

tt
VV QED!

d) The solutions for V and A are not independent because the two wave equations in c)

apply only when V and A are interrelated by the Lorentz gauge-condition. Then ρ and

J in the two wave equations automatically satisfy the charge conservation equation.

Problem 2

a) The potential: , '   where; ')'(1
4

1)(
0

rrrr −== � r  
r

τρ
πε

dV is the special solution

(“partikulærløsningen”) of  Poisson’s equation: ./ 0
2 ερ−=∇ V

If the potential is known, the charge distribution giving rise to the potential is given

by: .2
0 V∇−= ερ  For the given potential we have V(r)= V(r) and directly obtain from

the Laplacian in spherical coordinates:
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−=∇−= .for  ;

           for  ; 0   
)()(

3
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Q
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dr
dVr

dr
d

r
rVr

π

εερ

This is a uniform charge distribution of density 3
3
4 R

Q
π

ρ =  in a sphere of radius R.
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b) With the given formula substituted into the solution given in a) we obtain the multi-

pole development:

( )  ''cos)')('(
4

11 ')'(1
4

1)(
0 0

1
0

� ��
∞

=
+==

m
m

m
m dPr

r
dV τθρ

πε
τρ

πε
rrr

r
.

The monopole- and the dipole-terms are, respectively: ,)(  ;
4 0

�== τρ
πε

dQ
r

QVmono r

and .''cos')'(
4

1
2

0
�= τθρ

πε
dr

r
Vdip r

c) Since rr ˆ''cos' ⋅=θr , we have:  2
0

2
0

ˆ
4

1ˆ)'')'((
4

1)(
r

d
r

Vdip
rprrrr ⋅=⋅= � πε

τρ
πε

, where

p �= τρ drr)(  is the dipole moment. QED!

With the dipole moment along the z axis and spherical coordinates, we have

2
0

cos
4

1),(
r

prVV dipdip
θ

πε
θ ==  and obtain the field components from the given

formulas for the gradient in spherical coordinates:

,
4

cos2 3
0r

p
r

V
E dip

r πε
θ=

∂
∂

−=  ,
4

sin1
3

0r
pV

r
E dip

πε
θ

θθ =
∂

∂
−=  and .0

sin
1 =

∂
∂

−=
φθφ
dipV

r
E

d) In coordinate-free form the dipole field is given by:

[ ],ˆ)ˆ(31
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since rr ˆ/ ==∇ rr . QED!

Problem 3
a) Maxwell's equations in integral form follow from the divergence- and the curl-

theorems. We here use the general form of the equations (cf. page 10 of the problem

set), the corresponding equations in matter follow quite straightforwardly.

0=⋅∇ B   �  0=⋅� aB d  (no magnetic monopoles)

0ερ=⋅∇ E � Qd =⋅� aE0ε  (Gauss’ law; Q �= τρd  is the charge enclosed by the

Gaussian surface.)
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t∂
∂−=×∇ BE � 

dt
dd Φ−=⋅� lE (Faraday’s induction law; � ⋅=Φ aB d  is the magnetic

flux through the surface enclosed by the loop.)

t∂
∂+=×∇ EJB 000 εµµ � displcond IId +=⋅� lB

0

1
µ

 (Ampère’s law; � ⋅= aJ dIcond  is the

conduction current and  )( 0 � ⋅= aE d
dt
dIdispl ε  is the displacement current through the

surface enclosed by the Ampèrian loop)

The tangential (in-plane) components of E and H and the normal components of B and

D are continuous across an interface between two materials without free charges?

b) The field is given by E = −∇ V − ∂
∂
 A
t

. We only retain terms that do not approach zero

faster than 1/r for r→∞. The first term in the expression for V approaches zero as 1/r2

and cannot give contributions of the desired form. However, from the second term of

V we get a contribution of the desired form when the gradient is taken with respect to

the r dependence in )/( crt −p� . Since rr /ˆ rr ==∇ , we have
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where rrppp ˆ)ˆ( ⋅−=⊥ ������ is the component of p��  perpendicular to r and we have used that

1/c2=µ0ε0.

c) The given expression follows directly from the result in b) and the vector triple

product (see the given formulas): ( ) [ ] ⊥−=⋅−−=×× prrppprr �������� ˆ)ˆ(ˆˆ .

For the magnetic field we only get a contribution of the desired form when the curl is

taken with respect to the r dependence of )/( crt −p� , and obtain:

)./(ˆ
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4
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Here we have used that: ( ) ( )xyz
yz

x r
c

p
z
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d) From the results in b) and c) we see that E, B, and r̂ form an orthogonal right-handed

system in the usual sense.  Therefore Poynting's vector is directed radially and given

by:

            ( ) ( ) ,ˆ  sin
4

)/(
ˆ

4
)/(1 2

2

2
0

2

2
0

0

rrBES θ
π

µ
π

µ
µ cr

crtp
cr

crtp −
=−=×= ⊥

����

where we have used that θsinpp ���� =⊥ , with θ  being the angle between p��  and r.

Integrating S over a sphere of radius r we obtain for the total radiated power:

( ) c
crtp

d
c

crtp
dP

π
µ

φθθ
π

µ ππ

6
)/(

 d sin
4

)/( 2
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2
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aS ,

since ra ˆ  sin2 φθθ ddrd = .  The θ  integral is most easily evaluated by introducing

x = cosθ  as a new integration variable: ( ) .
3
4d 1d sin

1

1

2

0

3 =−= ��
−

xxθθ
π

-------------------------------------------------------------


