
TFY4240 Electromagnetic theory: Solution to exam, Dec 2015

Problem 1

(a) The problem is to find the potential V in some region Ω of a physical system, given (i) the charge
density in Ω and (ii) V on the boundary of Ω. The method consists of constructing an alternative system
where (i) and (ii) are unchanged, and solving the problem for the alternative system instead (because
a uniqueness theorem guarantees that the solution for V in Ω will be the same in both systems). The
alternative system contains image charges in the region outside of Ω, hence the name of the method.

(b) The potential is, for |r| ≥ R,

V (r) =
1

4πε0

[
q

|r − aẑ|
+

q′

|r − bẑ|

]
. (1)

The boundary condition (BC) is V (r) = 0 for all r with |r| = R. To find the two unknowns q′ and b,
we can consider the BC for two special cases, say r = ±Rẑ. This gives

for r = +Rẑ :
q

|R− a|
+

q′

|R− b|
= 0 ⇒ q′ = −R− b

a−R
q, (2)

for r = −Rẑ :
q

| −R− a|
+

q′

| −R− b|
= 0 ⇒ q′ = −R+ b

R+ a
q. (3)

where we used that a > R and b < R. Equating the two expressions for q′ gives

(R+ a)(R− b) = (R+ b)(a−R) ⇒ 2R2 = 2ab ⇒ b =
R2

a
. (4)

Inserting this result for b into one of the equations for q′, say Eq. (3), gives

q′ = −R+R2/a

R+ a
q = −R

a
· 1 +R/a

R/a+ 1
q = −R

a
q. (5)

We should now check whether this solution for q′ and b also satisfies the BC’s for the general case
|r| = R (after all, while getting a solution to our set of two linear equations (2)-(3) in two unknowns was
mathematically guaranteed, it is a priori not obvious that we would get the same solution regardless of
which two special points on the spherical surface we selected). To this end, let us write

|r − cẑ| =
√

(r − cẑ) · (r − cẑ) =
√
r2 − 2cr · ẑ + c2 =

√
r2 − 2rc cos θ + c2. (6)

Using this result, the second term inside the square brackets in (1) becomes, for |r| = R,

−qR/a√
R2 − 2R · (R2/a) cos θ + (R2/a)2

= − q√
R2 − 2Ra cos θ + a2

, (7)

which is the negative of the first term, confirming the BC for an arbitrary point on the spherical surface.

(c) The surface charge density σ is given by

σ = −ε0

[
∂V

∂n

∣∣∣∣∣
outside

− ∂V

∂n

∣∣∣∣∣
inside

]
= −ε0

∂V

∂n

∣∣∣∣∣
outside

. (8)

Here ”outside” (”inside”) refer to evaluating the derivatives just outside (inside) the spherical surface.
The ”inside” term vanishes since the sphere is a conductor and thus an equipotential in electrostatics.
Since the surface normal has the same direction as r̂, it follows that ∂/∂n = ∂/∂r. Thus

σ = − 1

4π

∂

∂r

[
q√

r2 − 2ra cos θ + a2
+

q′√
r2 − 2rb cos θ + b2

] ∣∣∣∣∣
r=R

=
1

4πε0

[
q(R− a cos θ)

(R2 − 2Ra cos θ + a2)3/2
+

q′(R− b cos θ)

(R2 − 2Rb cos θ + b2)3/2

]
=

q

4π

R2 − a2

R(R2 + a2 − 2Ra cos θ)3/2
. (9)
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As is reasonable, this expression for σ has the opposite sign of q and its magnitude decreases with θ.
Also, its dimension is [charge]/[length]2, as it should be (it is good to make such checks).

The total charge of the entire system (point charge + sphere) is q + Q ≡ Qtot. Here, Qtot is also the
charge appearing in the monopole term Qtot/4πε0r in the multipole expansion of the potential. From
(1) one can see that the monopole term is (q + q′)/4πε0r, so Qtot = q + q′, giving

Q = Qtot − q = (q + q′)− q = q′. (10)

Alternatively, Q can be found by integrating the surface charge density σ over the spherical surface:

Q =

∫
σda = R2

∫ 2π

0

dϕ

∫ π

0

dθ sin θ σ =
qR(R2 − a2)

2

∫ 1

−1

dx

(R2 + a2 − 2Rax)3/2
(11)

(here the ϕ-integral just gave a factor 2π and we changed integration variables from θ to x = cos θ).

The integral is
∫ 1

−1 dx (C +Dx)−3/2 with constants C = R2 − a2 and D = −2Ra. Changing integration
variable to u = C +Dx, the integral becomes

1

D

∫ C+D

C−D
duu−3/2 =

1

D
· 1

−3/2 + 1
u−3/2+1

∣∣∣∣∣
C+D

C−D

= − 2

D

[
1√

C +D
− 1√

C −D

]
. (12)

Using
√
C ±D =

√
R2 + a2 ∓ 2Ra =

√
(R∓ a)2 = a∓R, we get

Q =
qR(R2 − a2)

2
· (−2)

(−2Ra)

[
1

a−R
− 1

a+R

]
︸ ︷︷ ︸

2R/(a2−R2)

= −qR
a

= q′. (13)

(e) Call the second image charge q′′. Since q and q′ together make V = 0 at r = R, the job of q′′ is to
raise the potential from 0 to V0 at r = R. Since all points with |r| = R should be raised by the same
value V0, q′′ must be positioned equally far away from all these points, and therefore it must be placed at
the origin r = 0. Its potential at r = R is therefore q′′/4πε0R. This should equal V0, so q′′ = 4πε0RV0.
The potential outside the sphere is V (r) = (4πε0)−1(q/|r − aẑ|+ q′/|r − bẑ|+ q′′/|r|).

Problem 2

(a) The field produced by wire i (i = 1, 2) will be ”circumferential” with a direction given by a right-hand
rule. The magnitude can be found by applying Stokes’ theorem (”the curl theorem” in the formula set)
to Ampere’s law (note that since there is no changing electric field, there is no displacement current, so
the Ampere-Maxwell law reduces to Ampere’s law)

∇×Bi = µ0Ji ⇒
∮
C

Bi · ds = µ0I (14)

where C refers to an ”Amperean” loop of circular shape with radius r centered on wire i and I is the
current through wire i. Since Bi points along ds and has constant magnitude on the loop, we get
Bi · 2πr = µ0I, so Bi = µ0I/2πr. At wire 1, B2 = ẑµ0/2πd. The force F1 on wire 1 is therefore
F1 = Il×B2, where ` points along ŷ. The force per length is therefore

F1

`
= IB2(ŷ × ẑ) =

µ0I
2

2πd
x̂. (15)

The force is attractive since it points towards wire 2.

(b) The equation implicitly refers to some volume, let’s call it Ω. The first term is the total electro-
magnetic force on the charges inside Ω. The second term is an integral over the surface of Ω, where
↔
T is the Maxwell stress tensor of the electromagnetic fields, which has an interpretation as force per
unit area (with diagonal elements representing pressures and off-diagonal elements representing shears).
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(Also, −
↔
T can be interpreted as a momentum current density.) The third term is the time derivative of

the total momentum stored in the electromagnetic fields inside Ω (the integrand S/c2 is the momentum
density of the fields).

(c) We pick the volume Ω to be the ”half-space” x < 0, as it contains all of wire 1 and none of wire 2, and
since the boundary plane x = 0 lies symmetrically between the wires. Since the problem is static, the

term with the time derivative in the force equation vanishes, giving F =
∮ ↔
T ·da. As hinted in the text, let

us consider the contribution of the plane x = 0 to the surface integral. The Maxwell stress tensor only has
magnetic contributions:1

Tij =
1

µ0
(BiBj −

1

2
δijB

2). (16)

It is important to note that in this expression, B
is the total magnetic field, i.e. B = B1 + B2. Of
course, By = 0 everywhere. Furthermore, in the
plane x = 0 we also have (see the figure) Bz =
0 (the z components from wires 1 and 2 cancel
each other) and Bx = 2B1 sin θ where B1 = B2 is
the magnitude of the individual fields and θ is the
angle defined in the figure. Here (see the figure)

B1 =
µ0I

2πR
where cos θ =

d/2

R
⇒ Bx =

2µ0I cos θ sin θ

πd
. (17)

In the surface integral we have

↔
T · da = Tijx̂ix̂j · dakx̂k = Tijdakx̂i (x̂j · x̂k)︸ ︷︷ ︸

δjk

= Tijdajx̂i. (18)

For the plane x = 0 (the yz plane), daj = da δjx, giving

↔
T · da = Tixda x̂i = da(Txxx̂ + Tyxŷ + Tzxẑ) (19)

where da is an infinitesimal surface element in the yz plane (i.e. da = dy dz in Cartesian coordinates).
Since By = Bz = 0 in this plane, it follows that

Tyx = Tzx = 0 and Txx =
1

µ0
(B2

x −
1

2
B2
x) =

B2
x

2µ0
. (20)

This gives, ∫
x=0

↔
T · da = x̂

∫
x=0

da Txx = x̂
2µ0I

2

(πd)2

∫ ∞
−∞

dy

∫ ∞
−∞

dz cos2 θ sin2 θ. (21)

Since we want the force per unit length we divide by the y-integral. Let us also change integration
variable from z to θ, using (see figure) z = (d/2) tan θ, so dz = (d/2)(cos2 θ)−1dθ. This gives∫

x=0

↔
T · da
`

= x̂
2µ0I

2

(πd)2
· d

2

∫ π/2

−π/2
dθ sin2 θ. (22)

The integral is just 〈sin2〉 = 1/2 multiplied by the integration length π. Thus∫
x=0

↔
T · da
`

=
µ0I

2

2πd
x̂, (23)

1The electric field is zero everywhere outside the wires. (Note however that the electric field is nonzero inside the wires
if the wires are not perfect conductors, since E = J/σ by Ohm’s law.)
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which is exactly the result we got for the force per unit length in (a). Indeed, it can be argued that
the contributions to the surface integral from the other boundaries ”at infinity” vanish (we don’t go into
more details here).

Problem 3

(a) The wave equations follow from the two Maxwell equations containing sources ρ and J (the other two
Maxwell equations are automatically satisfied by the potentials). The Ampere-Maxwell law ∇ ×B =
µ0J + µ0ε0∂E/∂t becomes, when using B = ∇ × A, E = −∇V − ∂A/∂t, and ∇ × (∇ × A) =
∇(∇ ·A)−∇2A (all these formulas are given in the formula set), and rearranging a little,

∇
(
∇ ·A +

1

c2
∂V

∂t

)
−∇2A +

1

c2
∂2A

∂t2
= µ0J , (24)

(we also used that µ0ε0 = 1/c2). We see that the desired wave equation for A follows if we choose

∇ ·A +
1

c2
∂V

∂t
= 0, (25)

which therefore is the Lorenz gauge condition. Similarly, Gauss’s law ∇ ·E = ρ/ε0 becomes

−∇2V − ∂

∂t
∇ ·A =

ρ

ε0
. (26)

Eq. (25) gives ∂
∂t∇ ·A = − 1

c2
∂2V
∂t2 , which when inserted into (26) gives the desired wave equation for V .

(b) While the original equation contains partial derivatives wrt z and t, the rewritten equation instead
contains partial derivatives wrt ξ = z − vt. Thus we need to rewrite the former in terms of the latter.
Using the chain rule we have

∂

∂z
=

∂ξ

∂z

∂

∂ξ
=

∂

∂ξ
⇒ ∂2

∂z2
=

∂2

∂ξ2
, (27)

∂

∂t
=

∂ξ

∂t

∂

∂ξ
= −v ∂

∂ξ
⇒ ∂2

∂t2
= −v ∂

∂ξ

(
−v ∂

∂ξ

)
= v2

∂2

∂ξ2
. (28)

This gives
∂2V

∂z2
− 1

c2
∂2V

∂t2
=

(
1− v2

c2

)
∂2V

∂ξ2
= (1− β2)

∂2V

∂ξ2
. (29)

Also using the expression for ρ(r, t), in which δ(z − vt) = δ(ξ), gives the desired differential equation.

(c) We have
∂

∂ξ
=
dz′

dξ

∂

∂z′
= γ

∂

∂z′
⇒ ∂2

∂ξ2
= γ

∂

∂z′
γ
∂

∂z′
= γ2

∂2

∂z′2
. (30)

Using also that (1−β2) = γ−2 gives (1−β2)∂2V/∂ξ2 = γ−2γ2∂2V/∂z′2 = ∂2V/∂z′2. Furthermore, using
the identity δ(ax) = |a|−1δ(x) in the formula set gives δ(ξ) = δ(z′/γ) = |γ|δ(z′) = γδ(z′). Putting these
things together, we arrive at the differential equation

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z′2
= − γq

4πε0
δ(x)δ(y)δ(z′). (31)

We recognize this as the Poisson equation for a point charge γq ≡ Q at the origin (0, 0, 0) in a space with
Cartesian coordinates (x, y, z′). We know that the potential for this problem is V = Q/4πε0r

′ where

r′ ≡
√
x2 + y2 + z′2. Inserting Q = γq and z′ = γξ = γ(z − vt) then gives the desired expression for V .

(d) The wave equations for V and Az only differ on the rhs, containing ρ/ε0 and µ0Jz, respectively.
Using Jz = ρv, we see that ρ is a common factor, so the wave equation for Az is obtained by making the

4



replacement 1/ε0 → µ0v in the wave equation for V . As this replacement just involves constants, Az is
found by making the same replacement in the solution for V , giving

Az(x, y, z, t) =
µ0γqv

4π
√
x2 + y2 + γ2(z − vt)2

. (32)

(e) The electric field is E = −∇V − ∂A/∂t (cf. formula set). Using the solutions for V and A gives

∇V = x̂
∂V

∂x
+ ŷ

∂V

∂y
+ ẑ

∂V

∂z
= − γq

4πε0

xx̂ + yŷ + γ2(z − vt)ẑ
[x2 + y2 + γ2(z − vt)2]3/2

, (33)

∂A

∂t
= ẑ

∂Az
∂t

= −µ0γqv

4π

γ2(z − vt)(−v)ẑ

[x2 + y2 + γ2(z − vt)2]3/2
. (34)

Combining these results to find E, one sees that the x and y components take the form stated in the
text. For the z component we need to explicitly sum the contributions from (33) and (34), giving

γq

4π

z − vt
[x2 + y2 + γ2(z − vt)2]3/2

{
γ2

ε0
− µ0γ

2v2
}
. (35)

Using now that µ0 = 1/ε0c
2, the quantity in curly brackets becomes (1/ε0)γ2(1 − v2/c2) = 1/ε0, thus

also giving the z component stated in the text.

(f) We note that R = xx̂ + yŷ + (z − vt)ẑ = RR̂ and that from Fig. 3 it follows that z − vt = R cos θ.2

Thus R2 = x2 + y2 + (z − vt)2 = x2 + y2 +R2 cos2 θ, i.e. x2 + y2 = R2(1− cos2 θ) = R2 sin2 θ. Thus

E =
γq

4πε0

RR̂

[R2 sin2 θ + γ2R2(1− sin2 θ)]3/2
=

γq

4πε0

R̂

R2

1

[γ2 + (1− γ2) sin2 θ]3/2
. (36)

Next, pulling out γ3 = (γ2)3/2 in the denominator will give us the desired γ−2 = 1−β2 in the numerator.
Left inside the square brackets is then 1+[(1−γ2)/γ2] sin2 θ, where (1−γ2)/γ2 = γ−2−1 = 1−β2−1 =
−β2. This gives the expression stated in the text.

(g) For arbitrary β one can see that

for θ = 0, π (forward/backward directions), E =
q

4πε0

R̂

R2
(1− β2), (37)

for θ = π/2 (transverse directions), E =
q

4πε0

R̂

R2

1√
1− β2

. (38)

Ultrarelativistic case (β ≈ 1): |E| is very small in the forward/backward directions (→ 0 as β → 1) and
very large in the transverse directions (→∞ as β → 1). The variation of |E| with the angle θ is therefore
very strong in this case.
Nonrelativistic case (β ≈ 0): For both the forward/backward and transverse directions, E is approxi-

mately given by the Coulomb form q/4πε0R
2. The variation of |E| with the angle θ is therefore very

weak in this case.

(h) The energy per unit time is P =
∮
S · da, where S = µ−10 (E ×B) is the Poynting vector and the

integral is over the surface of the sphere. Because E ‖ R̂, it follows from the properties of the cross

product that S has no component along R̂. Since da ‖ R̂, it follows that S · da = 0 everywhere on the
spherical surface, and therefore P = 0.

(i) Radiation is electromagnetic energy that escapes from a source and propagates ”to infinity”. It can
be more precisely defined by considering the energy per unit time P (r) =

∮
S · da passing through a

sphere of radius r centered at the source. If limr→∞ P (r) 6= 0 the source radiates. Since the area of the
sphere increases as r2, radiation requires S to fall off no faster than 1/r2, which in turn requires E and
B to have contributions decaying like 1/r. Radiation requires accelerating charges. Thus the particle
with constant velocity does not radiate. (This is also consistent with the results found in (f) and (h)).

2Alternatively, this can be seen by calculating R · ẑ, which on the one hand equals R · 1 · cos θ, and on the other hand
equals (xx̂ + yŷ + (z − vt)ẑ) · ẑ = z − vt.
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