
TFY4240 Electromagnetic theory: Solution to exam, May 2018

Problem 1

(a) The problem is to find the potential V in some region Ω of a physical system, given (i) the charge
density in Ω and (ii) boundary conditions for V on the boundary of Ω. The method consists of construct-
ing an alternative system where (i) and (ii) are unchanged, and solving the problem for the alternative
system instead (because a uniqueness theorem guarantees that the solution for V in Ω will be the same
in both systems). The alternative system contains ”image” charges in the region outside of Ω, hence the
name of the method.

(b) Using ∇ ·D = ρf , D = εE, and E = −∇V leads to the Poisson equation

∇2V = −ρf
ε

(1)

We will solve this in each of the two regions and then match the solutions at the boundary using the
boundary conditions. To find the potential in any one of the two regions, we may modify the charge
distribution in the other region. To find the potential in region 1, we remove medium 2, letting all space
be filled by medium 1, and put an image charge q1 at z = d (and, by symmetry, we take the x and y
positions of the image charge to the x = 0, y = 0). Using also that ρf = 0 in region 1, the potential in
region 1 is

V1(x, y, z) =
1

4πε1

q1√
x2 + y2 + (z − d)2

. (2)

To find the potential in region 2, we remove medium 1, let all space be filled by medium 2, and put an
image charge q2 at z = −d. Using also that ρf = qδ(r − dẑ) in region 2 then gives

V2(x, y, z) =
1

4πε2

[
q√

x2 + y2 + (z − d)2
+

q2√
x2 + y2 + (z + d)2

]
. (3)

Now we invoke the boundary conditions (BC), which are (cf. Eq. (1) in the list of formulas)

V2 − V1 = 0, (4)

ε2∂zV2 − ε1∂zV1 = −σf , (5)

where all quantities are evaluated at z = 0. The first BC gives, after cancelling common factors,

q1
ε1

=
q + q2
ε2

. (6)

For the second BC we need to evaluate

∂

∂z
[x2 + y2 + (z − a)2]−1/2

∣∣∣
z=0

= −1

2
[x2 + y2 + (z − a)2]−3/2 · 2(z − a) · 1

∣∣∣
z=0

=
a

[x2 + y2 + a2]3/2
. (7)

The second BC then gives, upon cancelling some common factors and using that σf = 0 (because there
is no free surface charge in the system),

qd+ q2(−d)− q1d = 0 ⇒ q − q2 = q1. (8)

Inserting this into the first BC gives

q − q2
ε1

=
q + q2
ε2

⇒ ε2(q− q2) = ε1(q+ q2) ⇒ (ε1 + ε2)q2 = (ε2− ε1)q ⇒ q2 =
ε2 − ε1
ε2 + ε1

q (9)

and

q1 = q − q2 =
q

ε2 + ε1
[ε2 + ε1 − (ε2 − ε1)] =

2ε1
ε2 + ε1

q. (10)

Inserting these expressions for q1 and q2 back into V1 and V2 concludes the solution of the problem.
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(c) As the charge q is in region 2, we must use V2 to find the force. The first term in V2 (proportional to
q) is due to q itself, and since a particle doesn’t act with a force on itself, the force on q is given solely
from the electric field due to the second term ∝ the image charge q2. As the potential is of Coulomb
type, so is the field and the force, so it may be calculated simply as

F =
qq2

4πε2R2
q2

R̂q2 , (11)

where Rq2 is the distance between q and q2, which is 2d, and R̂q2 is the unit vector pointing from q2 to
q, which is ẑ. Inserting also for q2 gives

F =
q2

4πε2

ε2 − ε1
ε2 + ε1

1

4d2
ẑ. (12)

Of course this result could also have been found by a more explicit calculation.

For the special case ε1 = ε2, the force F is seen to vanish. This is reasonable, as in this case there is
only a single medium filling all space, so there is no interface and thus no surface bound charge that
can give a force on q. (Remark: Arguing that F = 0 is reasonable because q2 = 0 is not a good an-
swer, because it refers to the image charge q2 which is fictitious, not a part of the actual physical system.)

(d) The volume bound charge density in a simple dielectric medium is

ρb = −∇ · P = −ε0χ∇ ·E = −ε0χ
1

ε
∇ ·D = −ε0χ

1

ε
ρf = − 1

κ
(κ− 1)ρf = (1/κ− 1)ρf , (13)

where I introduced the dielectric constant κ = ε/ε0 and used χ = κ− 1. This shows that there is volume
bound charge only where there is volume free charge. Applying this result to each of the two regions
thus gives

ρb,1 = (1/κ1 − 1)ρf,1 = 0, (14)

ρb,2 = (1/κ2 − 1)ρf,2 = (1/κ2 − 1)qδ(r − dẑ). (15)

This result can be summarized as
ρb = (1/κ2 − 1)qδ(r − dẑ). (16)

Alternatively, one may find ρb using a more explicit calculation (but this is more technical so I don’t
really recommend it): Consider a contribution VQ = Q

4πεRQ
to the potential V in a given region, where

RQ = r − rQ. The corresponding electric field and polarization is

EQ = −∇VQ = − Q

4πε
∇(1/RQ)︸ ︷︷ ︸
−R̂Q/R2

Q

=
Q

4πε

R̂Q
R2
Q

⇒ PQ = ε0χEQ =
Q

4π

κ− 1

κ

R̂Q
R2
Q

(17)

and the corresponding contribution to ρb is

ρb,Q = −∇ · PQ = − Q
4π

κ− 1

κ
∇ · R̂Q

R2
Q︸ ︷︷ ︸

4πδ(RQ)

= (1/κ− 1)Qδ(r − rQ). (18)

If rQ is outside the region in which VQ is a valid contribution to V , r 6= rQ for any r in the region, so the
delta function will always be zero. Thus image charges do not contribute to ρb. The only contribution
is therefore from the point charge q, giving again Eq. (16).

(e) A dielectric body/region contributes a surface bound charge density P ·n where P is the polarization
and n is a unit vector perpendicular to the surface, pointing out of the body/region. Since in our case
we have an interface between two regions of different dielectric media, each region contributes a surface
bound charge density, giving the total surface bound charge density

σb = σb,1 + σb,2 = P1 · (+ẑ) + P2 · (−ẑ) = (P1 − P2) · ẑ = P1z − P2z

= ε0(χ1E1z − χ2E2z) = ε0(χ2∂zV2 − χ1∂zV1). (19)
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Using (7) gives

σb(x, y) = ε0

[
χ2

ε2
(q − q2)− χ1

ε1
q1

]
d

4π[x2 + y2 + d2]3/2
. (20)

Inserting for q2 and q1, the expression in the square brackets is

q1

(
χ2

ε2
− χ1

ε1

)
=

q

ε0

2ε1
ε1 + ε2

(
κ2 − 1

κ2
− κ1 − 1

κ1

)
=

q

ε0

2κ1
κ1 + κ2

κ1(κ2 − 1)− κ2(κ1 − 1)

κ1κ2

=
2q

ε2

κ2 − κ1
κ1 + κ2

, (21)

giving

σb(x, y) =
1

2πκ2

κ2 − κ1
κ1 + κ2

qd

[x2 + y2 + d2]3/2
. (22)

Problem 2

(a) The motion of the bar implies that the horizontal position x of the bar changes, so the flux Φ enclosed
by the circuit changes. By the flux rule, an emf ε = −dΦ/dt is generated in the circuit. The current is
given by Ohm’s law, giving I = |ε|/R (only the bar contributes to the resistance, as the rails are perfect
conductors), i.e.

I =
1

R

∣∣∣ d
dt

(B`x)
∣∣∣ =

B`v

R
. (23)

The direction of the current can be found in various ways:

• From the Lorentz force Fm = qv ×B on a positive charge q in the bar: Fm is directed upwards,
corresponding to a counterclockwise current.

• From Lenz’s law: As the area of the circuit increases, the induced current will create a magnetic
field whose direction is opposite to the external field B, i.e. out of the page. By a right-hand rule,
the current is thus counterclockwise.

• From an alternative calculation of I that also includes the sign: The flux through the circuit is
Φ =

∫
a
B ·da where a is a surface having the circuit as its boundary. Obviously the simplest choice

for a is the flat rectangle bounded by the circuit. Picking the positive circulation direction to be
clockwise, it follows by a right-hand rule that the unit vector n in da = nda is into the page, so
that B · da is positive, giving Φ = +BLx. Thus I = ε/R = − 1

R
d
dt (BLx) = −BLvR . Since the

sign of I is negative, the current is against the positive circulation direction, i.e. the current is
counterclockwise.

(b) Due to the current I in the bar, a force F = IL ×B acts on it. Here L is a vector of length L in
the direction of the current in the bar, i.e. upwards. It follows that F is to the left, so it opposes the
bar’s motion to the right. Newton’s 2nd law (N2) for the bar in the horizontal direction is thus

mdv/dt = −ILB. (24)

Using v = RI/(BL) and inserting this into our N2 to eliminate v gives

mR

BL
dI/dt = −BLI ⇒ dI

dt
= −αI where α =

B2L2

mR
. (25)

The solution of this differential equation is I = I0 exp(−αt) where I0 is given by inserting the initial
velocity v0 into the relationship between I and v, giving I0 = BLv0

R .

(d) The total energy dissipated as Joule heating between t = 0 and t =∞ is∫ ∞
0

P (t)dt =

∫ ∞
0

dtRI2(t) = RI20

∫ ∞
0

dt exp(−2αt) = RI20
1

−2α
exp(−2αt)

∣∣∣∞
0

=
RI20
2α

=
R

2

mR

B2L2

B2L2v20
R2

=
1

2
mv20 . (26)
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This shows that the entire initial kinetic energy of the bar is transformed into heat. Also note that the
external field B is constant throughout, so the energy stored in it does not change with time. Thus the
result (26) is a statement of energy conservation.

Problem 3

(a) The Maxwell equations for magnetostatics are

∇ ·B = 0, (27)

∇×B = µ0j. (28)

The introduction of the vector potential A via B = ∇ ×A is directly motivated by Eq. (27), because
it then becomes ∇ · (∇ ×A) = 0, which is the identity (9) in the formula set, i.e. it is automatically
satisfied for any A, and thus it does not put any constraint on A. Therefore we are left with Eq. (28),
which upon using identity (11) becomes the differential equation

∇2A−∇(∇ ·A) = −µ0j. (29)

(b) (i) Under the gauge transformation, B changes to

B′ = ∇×A′ = ∇×A +∇×∇λ = B + 0 = B, (30)

where we used identity (10) in the formula set. (ii) The fact that B is invariant under a gauge transfor-
mation implies that we have some freedom in choosing A, and this freedom can be implemented as the
Coulomb gauge condition ∇ ·A = 0. (To see this, suppose B = ∇×A0 where A0 does not satisfy the
Coulomb gauge condition. We can then do a gauge transformation A = A0+∇λ. Imposing the Coulomb
gauge condition on A thus gives∇2λ = −∇·A0, which is a Poisson equation for the unknown function λ.)

In the Coulomb gauge, the differential equation (29) reduces to ∇2A = −µ0j, which is a Poisson
equation for each cartesian component. Thus by analogy with the Poisson equation for V we have the
correspondence V → Ai, ρ/ε0 → µ0ji. The given solution for V then shows that the solution for A is

A(r) =
µ0

4π

∫
d3r′

j(r′)

|r − r′|
. (31)

(c) From the general formula set, the electromagnetic field momentum is given by

PEM = ε0

∫
d3r (E ×B) = ε0

∫
d3r (E × (∇×A)), (32)

where the integral is over all space. To show that PEM =
∫
d3r ρ(r)A(r), we start by looking at the

cartesian components of PEM. Thus consider

(E × (∇×A))i = εijkEj(∇×A)k = εijkEjεklm∂lAm = εkijεklmEj∂lAm

= (δilδjm − δimδjl)Ej∂lAm = Ej∂iAj − Ej∂jAi. (33)

Putting this back in the integral, using integration by parts on each term, and throwing away the
boundary terms at infinity (as stated in the hint), gives

PEM,i = ε0

∫
d3r (−Aj∂iEj +Ai∂jEj). (34)

In the first term we use Ej = −∂jV and the fact that partial derivatives commute to write Aj∂i∂jV =
Aj∂j∂iV . In the second term we note that ∂jEj = ∇ ·E. Thus

PEM,i = ε0

∫
d3r [Aj∂j(∂iV ) +Ai∇ ·E] . (35)

In the first term we do another integration by parts, which effectively turns that term in the integrand
into −(∂iV )∂jAj = Ei∇ ·A = 0, where we used the Coulomb gauge condition ∇ ·A = 0. In the second
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term we use Gauss’ law ∇ ·E = ρ/ε0. This gives PEM,i =
∫
d3r ρ(r)Ai(r), which is the ith component

of the desired result.

Remark: This result does NOT imply that the integrands in the two expressions for PEM are equal. In
particular, ρA is nonzero only at points where ρ 6= 0, which may be a very limited set of points, as
illustrated in the example in (d).

(d) The two point charges don’t contribute to A, since the only source of A is current density j, cf. Eq.
(31). Also, the magnetic dipole contributes nothing to ρ. Thus we have for this system

ρ(r) = qδ(r − dẑ) + (−q)δ(r − (−dẑ)), (36)

A(r) =
µ0

4π

m× r

r3
, (37)

where we used Eq. (7) in the formula set and the fact that r0 is the origin. Inserting these expressions
into the integral and evaluating it gives

PEM = q [A(dẑ)−A(−dẑ)] =
qµ0

2π

m× ẑ

d2
. (38)

(e) (i) From the formula set, one can write PEM =
∫
d3r gEM where

gEM =
S

c2
(39)

is the momentum density of the electromagnetic fields and S is the Poynting vector. (ii) The Poynting
vector S can be interpreted as the energy per unit time per unit area transported by the electromagnetic
fields. This means that S is an energy current density (energy flux density), similarly to how j is the
(charge) current density. Thus

∮
a
S · da is the amount of energy per unit time leaving a volume Ω

through its surface a.
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