
TFY4240 Electromagnetic theory: Solution to exam, spring 2020

Problem 1

(a) It is convenient to take the z axis to coincide with the line and use cylindrical coordinates (s, φ, z).
The electric field will only depend on the distance s to the line and will be parallel to the direction ŝ.
Thus E = E(s)ŝ where E(s) is to be determined. The high symmetry implies that Gauss’s law will be
useful. As the Gaussian surface we take a cylinder of radius s and length L whose axis coincides with
the line. The form of E implies that the electric flux is nonzero only through the curved parts of the
cylinder surface. Then Gauss’s law gives

L · 2πs · E(s) = Qinside/ε0 = λL/ε0, (1)

which gives

E =
λ

2πε0s
ŝ. (2)

Since E points in the ŝ direction, V will not depend on φ or z. To find V we may consider the line
integral from a point P0 with s = s0 to a point P1 with s = s1. This gives

V (s1)− V (s0) =

∫ P1

P0

dV = −
∫ P1

P0

E · dr = − λ

2πε0

∫ s1

s0

ds

s
= − λ

2πε0
ln
s1
s0
. (3)

Therefore (C is a constant)

V (s) = − λ

2πε0
ln s+ C = − λ

2πε0
ln(x2 + y2)1/2 + C = − λ

4πε0
ln(x2 + y2) + C. (4)

(b) According to the method of images, the image charges must be placed outside the region where we
wish to find the potential, i.e. they must be placed somewhere inside the region of the two conductors.
By symmetry, the two image lines must intersect the x axis. Thus let the left (right) line have line charge
density λL (λR) and x-coordinate bL (bR). Furthermore, there is no physical charge in the region outside
the conductors. Thus we try the Ansatz

V (x, y) = − λL
4πε0

ln[(x− bL)2 + y2]− λR
4πε0

ln[(x− bR)2 + y2]. (5)

The condition that the left conductor is grounded becomes V (0, y) = 0, i.e.

λL ln[b2L + y2] = −λR ln[b2R + y2] (6)

which should hold for all y. For y = 0 this gives λL/λR = − ln(b2R)/ ln(b2L), while |y| → ∞ gives
λL/λR = −1. Thus λL = −λR and bL = −bR (having bL = bR is also a solution, but it gives V = 0
everywhere and is therefore not acceptable for general Vcyl). In the following we write λR ≡ λ and
bR ≡ b, giving

V (x, y) = − λ

4πε0
ln

(x− b)2 + y2

(x+ b)2 + y2
. (7)

(c) The condition V (x, y) = Vcyl for all (x, y) on the cylinder surface can be written

− λ

4πε0
ln

(x− b)2 + y2

(x+ b)2 + y2
= Vcyl. (8)

This can be rewritten as
(x− b)2 + y2 = W [(x+ b)2 + y2] (9)

where we have defined the constant W ≡ exp (−4πε0Vcyl/λ). Multiplying out gives

(x2 + y2)(1−W )− 2bx(1 +W ) + b2(1−W ) = 0. (10)

1



The circular cross section of the cylinder surface implies that (x − a)2 + y2 = R2, i.e. x2 + y2 =
R2 − a2 + 2ax. Inserting this into (10) gives

(R2 − a2 + 2ax)(1−W )− 2bx(1 +W ) + b2(1−W ) = 0. (11)

This must be true for any x on the cylinder surface, and thus the coefficient of x here must vanish, i.e.

2a(1−W )− 2b(1 +W ) = 0 ⇒ b

a
=

1−W
1 +W

. (12)

The remaining part of (11) gives, after cancelling the common factor (1−W ), that R2− a2 + b2 = 0, i.e.

b =
√
a2 −R2. (13)

(From this it can be seen that a−R < b < a+R, so the right image line indeed lies inside the cylinder,
as it should.) Next, let us temporarily write 4πε0Vcyl/λ ≡ α, so W = exp(−α). The expression for b/a
in (12) can be rewritten as

b

a
=

1−W
1 +W

=
1− e−α

1 + e−α
=
eα/2 − e−α/2

eα/2 + e−α/2
=

sinh(α/2)

cosh(α/2)
= tanh(α/2) = tanh

(
2πε0Vcyl

λ

)
. (14)

Solving for λ and inserting (13) gives

λ =
2πε0Vcyl

arctanh
(√

1− (R/a)2
) . (15)

(d) 1. Since (15) relates Vcyl and λ, we can obtain the relation between Vcyl and Λ by establishing
a relation between λ and Λ. This can be done by applying Gauss’s law

∮
E · da = Qinside/ε0 to a

cylinder-shaped Gaussian surface of some arbitrary length L, concentric with the physical cylinder and
infinitesimally bigger than it in radius. On the RHS we have Qinside = ΛL. On the LHS we have to
calculate the flux of E through the Gaussian surface. The flux through the two flat parts is zero, since
E = 0 inside the cylinder. The flux through the curved part can be calculated from the potential V
given by the sum of the contributions from the two image lines. The (net) electric flux from the left
image line is zero since the same electric flux enters and leaves. The electric flux from the right image
line is 2πRL · λ/(2πε0R) = λL/ε0.1 Thus Gauss’s law gives λL/ε0 = ΛL/ε0 and thus λ = Λ. In other
words, the line charge density Λ on the (real) cylinder equals the line charge density λ on the (fictitious)
image line through the cylinder. It then follows from (15) that

Vcyl =
Λ

2πε0
arctanh

(√
1− (R/a)2

)
. (16)

2. For a positively charged cylinder (note that all the charge must be on the surface since the cylinder is
a conductor), negative charge will be drawn to the surface of the left conductor. This will polarize the
positive surface charge on the cylinder by shifting the surface charge distribution towards the left. Thus
the surface charge density σ is expected to have a maximum at γ = π and a minimum at γ = 0 and
2π, with an angular average σ̄ = Λ/(2πR). (This intuitive picture is confirmed by an exact calculation
which gives σ(γ) = Λb/[2πR(a+R cos γ)].)

Problem 2

(a) 1. I will limit the discussion here to the 12 interface, since the arguments are the same for the 23
interface. The boundary conditions that don’t involve charges or currents are

E1,‖ = E2,‖ and B1,⊥ = B2,⊥. (17)

1Alternatively, we could work out these contributions by noting that both image lines give zero electric flux through
the flat parts, so we may add the flat parts to get a closed surface, and then the electric flux is given by Qinside/ε0, where
Qinside equals 0 for the left image line and λL for the right image line.
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In this problem the components parallel to the interface are the φ and z components, and the component
perpendicular to the interface is the s component. Thus the boundary conditions can be rewritten as

E1,φ = E2,φ, E1,z = E2,z, B1,s = B2,s. (18)

From the form of the EM wave in region 2, it follows that all region-2 components here are zero. So are
all the region-1 components since E1 = B1 = 0. Thus the boundary conditions are satisfied.

2. The fields should satisfy the Maxwell equations in matter for region 2. Using ρf = jf = 0, D = εE,
and B = µH, the Maxwell equations can be written

∇ ·E = 0, (19)

∇ ·B = 0, (20)

∇×E = −∂B
∂t

, (21)

∇×B = εµ
∂E

∂t
. (22)

We now look up expressions for the divergence and curl in cylindrical coordinates and use the given form
of the fields. Eq. (19) gives

∂

∂s
(sẼ0(s)) = 0, (23)

Eq. (20) gives 0 = 0, and Eq. (21) gives

∂Ẽs
∂z

= −∂B̃φ
∂t

⇒ kẼ0(s) = ωB̃0(s). (24)

For Eq. (22) the analysis is a little more involved, as both the s and z components contribute. The s
component gives

−∂B̃φ
∂z

= εµ
∂Ẽs
∂t

⇒ kB̃0(s) = εµωẼ0(s), (25)

and the z component gives
∂

∂s
(sB̃0(s)) = 0. (26)

Eqs. (23) and (26) show that both Ẽ0(s) and B̃0(s) go like 1/s. Combining (24) and (25) gives

kẼ0(s) = ωB̃0(s) = (εµω2/k)Ẽ0(s), (27)

i.e.
ω

k
=

1
√
εµ
≡ v (28)

and
B̃0(s)

Ẽ0(s)
=

1

v
. (29)

In summary,

Ẽ0(s) =
F̃

s
, B̃0(s) =

F̃

vs
(30)

where F̃ is a complex amplitude.

(b) The charge density can be found from Gauss’s law:

ρ̃ = ε0∇ · Ẽ = 0. (31)

Alternatively, it can be found as the sum of free and bound charge:

ρ̃ = ρ̃f + ρ̃b = ρ̃b = −∇ · P̃ = −ε0χe∇ · Ẽ = 0. (32)
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The current density can be found from the Ampere-Maxwell law:

j̃ =
1

µ0
∇× B̃ − ε0

∂Ẽ

∂t
= iω

(
ε0 −

1

v2µ0

)
F̃

s
exp[i(kz − ωt)]ŝ. (33)

Alternatively, the current density can be found as the sum of free current, polarization current and bound
(magnetization) current:

j̃ = j̃f + j̃P + j̃b = j̃P + j̃b, (34)

where the polarization current density is

j̃P =
∂P̃

∂t
= ε0χe

∂Ẽ

∂t
= −iω(ε− ε0)

F̃

s
exp[i(kz − ωt)]ŝ, (35)

and the bound (magnetization) current density is

j̃b = ∇× M̃ =
χm
µ
∇× B̃ = −ikχm

µ

F̃

vs
exp[i(kz − ωt)]ŝ = −i ω

v2

(
1

µ0
− 1

µ

)
F̃

s
exp[i(kz − ωt)]ŝ. (36)

Adding these two contributions again gives (33) for the total current density. Finally it can be noted
that the continuity equation ∂ρ/∂t = −∇ · j is satisfied (0 = 0). Also, ρ and j vanish for the special
case of vacuum, as they should.

(c) Here σ is the surface charge density and K is the surface current density. The equation takes the
form of a continuity equation, i.e. a local conservation law for charge, but in contrast to the familiar
continuity equation in 3 dimensions, this is a 2-dimensional version that refers to charge and current in
the interface only.

The equation expresses how the charge dq = σda on an infinitesimal area element with area da in the
interface varies in time by current leaving and/or entering the element. First, note that since E = B = 0
in the perfect conductors, it follows from the Ampere-Maxwell law that j = 0 there. Thus no current
can flow between the perfect conductors and the interfaces. Furthermore, no current can flow between
region 2 and the interfaces since region 2 is vacuum with j = 0 (Eq. (33) for the vacuum case). Thus
any change of dq must be due to current flow in the interface. This leads in a natural way to this
2-dimensional version of the charge continuity equation.

(d) The argument for zero current between the perfect conductors and the interfaces is unchanged. But
now region 2 is not vacuum, which permits a current in region 2, as given by (33). Thus a contribution to
dq may come from current parallel to the direction ŝ perpendicular to the interfaces. The current from
region 2 into an infinitesimal area element in an interface is −jsda at the 12 interface and +jsda at the
23 interface. This gives a positive contribution to ∂dq/∂t = da ∂σ/∂t, so that the continuity equation is
modified to

∂σ

∂t
= −∇2D ·K ∓ js (37)

where the upper (lower) sign is for the 12 (23) interface.

The correctness of Eq. (37) can be verified by explicit calculations, by finding σ and K from the two
remaining boundary conditions. First consider the 12 interface. The general boundary conditions are

E2,⊥ − E1,⊥ = σ/ε0 and B2,‖ −B1,‖ = µ0(K × n), (38)

where n is a unit vector perpendicular to the interface, pointing from region 1 to region 2, and the signs
of the ⊥-components are with respect to this direction. Thus n̂ = ŝ, which gives

σ = ε0E2,s and K =
1

µ0
ŝ×B2,‖ =

1

µ0
ŝ×B2,φφ̂ =

1

µ0
B2,φẑ. (39)
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Using the expressions for the fields gives

σ̃ = ε0
F̃

si
exp[i(kz − ωt)] ⇒ ∂σ̃

∂t
= −iωε0

F̃

si
exp[i(kz − ωt)], (40)

K̃ =
1

µ0

F̃

vsi
exp[i(kz − ωt)]ẑ ⇒ ∇2D · K̃ =

∂K̃z

∂z
= iω

1

v2µ0

F̃

si
exp[i(kz − ωt)]. (41)

Thus
∂σ̃

∂t
+∇2D · K̃ = −iω

(
ε0 −

1

v2µ0

)
F̃

si
exp[i(kz − ωt)], (42)

which indeed equals −js at s = si, as seen from (33). At the 13 interface (s = so), the analysis is similar
with 1 → 3 and n̂ → −ŝ, so both σ and K change sign compared to at the 12 interface, which agrees
with the positive sign on the rhs of (37) in that case.

Problem 3

(a) The Lorenz gauge expression for A is

A(r, t) =
µ0

4π

∫
d3r′

j(r′, tr)

|r − r′|
(43)

where tr = t− |r − r′|/c is the retarded time. For t > 0 the problem text describes a surface current in
the xy plane with surface current density Kx̂. Therefore, with r′ = (x′, y′, z′),

j(r′, tr) = Kδ(z′)Θ(tr)x̂ (44)

where Θ is the Heaviside step function. Furthermore, since the current does not depend on x′ or y′,A(r, t)

cannot depend on x or y, so we may evaluate the integral for x = y = 0. Thus |r−r′| =
√
z2 + x′2 + y′2,

so

A(r, t) = x̂
µ0K

4π

∫
dx′
∫
dy′

Θ(t−
√
z2 + x′2 + y′2/c)√

z2 + x′2 + y′2
. (45)

The double integral here is best evaluated by going to polar coordinates. The integrand is independent
of the angle φ′ whose integral therefore just gives a factor 2π. This leaves the dependence on the radial
coordinate s′ =

√
x′2 + y′2, giving

A(r, t) = x̂
µ0K

4π
· 2π

∫ ∞
0

ds′ s′
Θ(t−

√
z2 + s′2/c)√

z2 + s′2
. (46)

If t < |z|/c the step function is zero for all s′, giving A = 0 then. For t > |z|/c the step function is
nonzero for s′ = 0 to s′ = s′max where ct =

√
z2 + s′2max, giving s′max =

√
(ct)2 − z2. Thus

A(r, t) = x̂
µ0K

2

∫ s′max

0

ds′
s′√

z2 + s′2
. (47)

Changing integration variable to u = z2 + s′2 gives du = 2s′ds′ and integration limits u = z2 for s′ = 0
and u = z2 + s′2max for s′ = s′max. Thus

A(r, t) = x̂
µ0K

2

1

2

∫ z2+s′2max

z2
duu−1/2 = x̂

µ0K

2
u1/2

∣∣∣∣∣
z2+s′2max

z2

= x̂
µ0K

2
(
√

(ct)2 −
√
z2) = x̂

µ0K

2
(ct− |z|). (48)

For a general t these results may be summarized as

A(r, t) = x̂
µ0K

2
(ct− |z|)Θ(t− |z|/c) (49)
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which is equivalent to the result stated in the problem text.

(b) Since there is no net charge anywhere, the scalar potential V = 0. Thus the electric field is

E = −∇V − ∂A

∂t
= −x̂µ0K

2

∂

∂t
[(ct− |z|)Θ(t− |z|/c)] . (50)

Using the product rule for differentiation, the term obtained by differentiating the step function gives
(ct− |z|)δ(t− |z|/c) = 0. Therefore

E(r, t) = −x̂µ0Kc

2
Θ(t− |z|/c). (51)

The magnetic field is

B = ∇×A =
∂Ax
∂z

ŷ (52)

where we used the form of (49) in the last equality. Thus we must consider

∂

∂z
[(ct− |z|)Θ(t− |z|/c)] = −Θ(t− |z|/c) ∂|z|

∂z︸︷︷︸
sgn(z)

+ (ct− |z|)δ(t− |z|/c)︸ ︷︷ ︸
0

(
−1

c

)
∂|z|
∂z

, (53)

where sgn(z) is the sign of z. It follows that

B(r, t) = −ŷµ0K

2
sgn(z)Θ(t− |z|/c). (54)

The fields are nonzero for |z| < ct. They therefore describe a wave with a wavefront at |z| = ct which
propagates outward from the xy plane (i.e. in the +ẑ direction for positive z and in the −ẑ direction
for negative z) at speed c as time increases from t = 0. ”Behind” this wavefront the fields are in phase
with relative magnitude |E|/|B| = c, E and B are mutually perpendicular. The fields are plane waves
since they are the same at every point in any plane perpendicular to the direction of propagation. On
each side of the xy plane, these properties are similar to a harmonic plane EM wave propagating in the
direction sgn(z)ẑ, except that the fields here have a very different dependence on time and space, being
constant inside (behind) the wavefront and zero outside.

(c) Since there are no particles outside the xy plane, there are no mechanical contributions to the
densities, only field contributions. The energy density is

uEM =
ε0
2
E2 +

1

2µ0
B2 =

µ0K
2

4
Θ(t− |z|/c). (55)

The energy current density is the Poynting vector

S =
1

µ0
E ×B =

µ0K
2c

4
Θ(t− |z|/c)sgn(z)ẑ. (56)

The momentum density is

gEM =
S

c2
=
µ0K

2

4c
Θ(t− |z|/c)sgn(z)ẑ. (57)

The momentum current density is −
←→
T , where

←→
T is the Maxwell stress tensor. More precisely, −Tij is

the momentum in the i direction crossing a surface oriented in the j direction, per unit area per unit
time. We have found that the only nonzero field components are Ex and By. It follows that all the

off-diagonal components of
←→
T vanish, i.e.

Tij = 0 for i 6= j. (58)
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Using the expressions for the fields, and ε0c
2 = 1/µ0, the diagonal components are

Txx = ε0(E2
x −

1

2
E2) +

1

µ0
(B2

x −
1

2
B2) =

ε0
2
E2 − 1

2µ0
B2 = 0, (59)

Tyy = ε0(E2
y −

1

2
E2) +

1

µ0
(B2

y −
1

2
B2) = −ε0

2
E2 +

1

2µ0
B2 = 0, (60)

Tzz = ε0(E2
z −

1

2
E2) +

1

µ0
(B2

z −
1

2
B2) = −ε0

2
E2 − 1

2µ0
B2 = −µ0K

2

4
Θ(t− |z|/c). (61)

Thus the only nonzero component of the momentum current density is −Tzz.

(d) We have E = −∂A∂t . Earlier we calculated this by first doing the spatial integral inA, and then taking
the time derivative. If we instead first take the time derivative, we will arrive at what is Jefimenko’s
equation for E for this problem (where ρ = ρ̇ = 0):

E(r, t) = − 1

4πε0c2

∫
d3r′

∂
∂tj(r

′, tr)

|r − r′|
. (62)

Using (44) and the definition of tr gives

∂

∂t
j(r′, tr) =

∂

∂t
Kδ(z′)Θ(tr)x̂ = Kδ(z′)δ(tr)x̂. (63)

Let us first calculate E for x = y = 0:

E(0, 0, z, t) = −x̂ K

4πε0c2

∫
dz′ δ(z′)

∫
dx′
∫
dy′

δ(t− |r − r′|/c)
|r − r′|

= −x̂ K

4πε0c2

∫
dx′
∫
dy′

δ(t−
√
z2 + x′2 + y′2/c)√
z2 + x′2 + y′2

= −x̂ K

4πε0c2
· 2π

∫ ∞
0

ds′ s′
δ(t−

√
z2 + s′2/c)√
z2 + s′2

. (64)

The argument of the Dirac delta function is

t− 1

c

√
z2 + s′2 ≡ g(s′). (65)

To calculate the integral, we use

δ(g(s′)) =
∑
i

1

|g′(s′i)|
δ(s′ − s′i) (66)

where {s′i} are the zeroes of g(s′). The function g(s′) is zero at

s′ =
√

(ct)2 − z2 ≡ s′0 (67)

provided that the argument of the square root is not negative (otherwise g(s′) has no zeroes, giving
E = 0). In this case the s′ integral will have an integrand proportional to δ(s′ − s′0), so there will only
be a contribution from s′ = s′0, which is a circle with radius s′0 centered at the origin. By symmetry, for
general values of x and y this will become a circle with radius s′0 centered at (x, y).

In conclusion, the only contribution to a nonzero E(x, y, z, t) comes from a circle in the xy plane, centered
at (x, y) and with radius

√
(ct)2 − z2. (Thus the distance from the point (x, y, z) to any point on this

circle is ct.)
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