
TFY4240 Electromagnetic theory: Solution to exam, spring 2022

Equation numbers in the exam text will be referred to with the prefix ET. Thus, for example, (ET4)
refers to Eq. (4) in the exam text.

Problem 1

(a) 1. The infinitesimal charge dq1 on an infinitesimal area da around the point r on the surface a of
the segment of cylinder 1 is dq1 = σ1(r)da. As the force on that infinitesimal charge due to cylinder 2
is dF = dq1E2(r), we get

F =

∫
dF =

∫
dq1E2(r) =

∫
a

da σ1(r)E2(r). (1)

In other words, to find F we can integrate σ1(r)E2(r) over the surface of the segment of cylinder 1.

2. Clearly the charge distribution on each cylinder has cylindrical symmetry around the cylinder axis.
Due to this symmetry and the properties of the electric field in electrostatics (divergence proportional to
ρ, and zero curl), it follows that1 the electric field of cylinder α must point radially, with its magnitude
only depending on the distance sα to the cylinder. Thus we can write Eα = Eαŝα where Eα (which is
not necessarily positive the way we have defined it) only depends on sα. Due to the high symmetry it is
convenient to use Gauss’s law in integral form, i.e.∮

Eα · da =
Qenclosed

ϵ0
(2)

with the closed Gaussian surface a chosen to be a cylinder of radius sα and length L that is concentric
with the physical cylinder. First consider the surface integral on the LHS. There is no contribution from
the two flat parts of the Gaussian cylinder surface since da there is perpendicular to Eα. This leaves
the contribution from the curved part, which, using da = daŝα, is given by Eα · 2πsαL. On the other
hand, Qenclosed equals σα · 2πbL for sα > b and 0 for sα < b. Thus the field vanishes inside the cylinder
(sα < b), while outside the cylinder (sα > b),

Eα =
bσα

ϵ0sα
. (3)

It follows from this result that outside the cylinder the field magnitude is given by Eq. (ET1), and that
the field points in the outward direction (i.e. away from the cylinder axis) if σα > 0 and in the inward
direction (i.e. towards the cylinder axis) if σα < 0.

(b) The second term in (ET2) vanishes. This can be argued either from the fact that this is a statics
problem, so the time derivative must give 0, or from the fact that B = 0 here, so S = 0. Thus F
simplifies to

F =

∮
a

←→
T · da (4)

and the components of the Maxwell stress tensor
←→
T simplify to

Tij = ϵ0

(
EiEj −

1

2
δijE

2

)
. (5)

The volume Ω can be chosen as described in the exam text because it satisfies the criteria: (i) it encloses
all the charges we want to find the force on, (ii) it does not enclose any other charges. The volume Ω
takes the form of a “half-cylinder” of length L and radius R. Thus its surface a consists of four parts:
two half-disks of radius R, respectively at z = L/2 and z = −L/2, and two “strips” of width L, one of
them curved (at distance R from the origin) and the other one flat (at x = 0, of height 2R). We now
consider their contributions to the surface integral in (4):

1More details about the reasoning leading to these conclusions could be given, but I omit them here.
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� For the two half-disks at z = ±L/2, note that for each point (x, y, L/2) on the half-disk with z = L/2
and da = daẑ, there is an “opposite” point (x, y,−L/2) on the half-disk with z = −L/2 and

da = da(−ẑ). As
←→
T is identical at these points (because E is independent of z), the contributions

←→
T · da from such pairs of points cancel. Thus the two half-disks give zero net contribution.

� For the curved strip, we can for R≫ w approximate sα in (ET1) by R, from which it follows that

E decays like2 1/R. Thus, since
←→
T is quadratic in E,

←→
T decays like 1/R2. On the other hand,

the area of the curved strip is 2πRL and thus grows like R. Therefore the contribution to
∮
a

←→
T ·da

scales like 1/R2 ·R = 1/R, which goes to 0 as R→∞. Thus the curved strip does not contribute
to F in the limit R→∞.

Thus the only contribution comes from the flat strip at x = 0. We have (also using the Einstein
summation convention)

←→
T · da = (Tijx̂i ⊗ x̂j) · (dakx̂k) = Tij dak x̂i (x̂j · x̂k) = Tij dak x̂i δjk = Tikdakx̂i. (6)

Thus

Fx =

∮
a

(
←→
T · da)x =

∮
a

Txkdak =

∮
a

(Txxdax + Txyday + Txzdaz). (7)

For the flat strip at x = 0 we have da = da · (+x̂), so dax = da and day = daz = 0, where da = dy dz.
Thus only Txx contributes. Because nothing depends on z, the z-integration just gives the factor L.
Furthermore, since Ez = 0, we get Txx = ϵ0(E

2
x − (1/2)E2) = (ϵ0/2)(E

2
x − E2

y). Thus

Fx =
Lϵ0
2

∫ ∞

−∞
dy (E2

x − E2
y). (8)

Here, Ex = E1,x + E2,x and Ey = E1,y + E2,y are at x = 0 given by

Ex =
b

ϵ0s
(σ1 − σ2) cos θ, (9)

Ey =
b

ϵ0s
(σ1 + σ2) sin θ, (10)

where cos θ = w/s, sin θ = y/s, with s =
√
w2 + y2. Inserting into (8) gives

Fx =
Lb2

2ϵ0

[
w2(σ1 − σ2)

2

∫ ∞

−∞
dy

1

(w2 + y2)2
− (σ1 + σ2)

2

∫ ∞

−∞
dy

y2

(w2 + y2)2

]
. (11)

Looking up the integrals, the first is π/(2w3), the second π/(2w). After cancelling some terms, one
arrives at

Fx = −πb2Lσ1σ2

ϵ0w
. (12)

Remark: It can be checked that the same result is obtained by evaluating the integral (1), as it of course
should be.

Problem 2

(a) 1. To show that Ẽ is perpendicular to k, we can e.g. start from Gauss’s law for D, i.e. ∇ ·D = ρf .
Since there is no free charge, ρf = 0. Also, D = ϵE in the simple medium (where the value of ϵ is for
the frequency ω under consideration). This gives ∇ · (ϵE) = 0, which implies ∇ ·E = 0. This also holds
for the complex version of the electric field, i.e. we have

∇ · Ẽ = 0. (13)

2A “fine point”: This 1/R decay is for σ1 + σ2 ̸= 0. For the special case σ1 + σ2 = 0, the 1/R decays from the two
cylinders will cancel, so the actual decay will be even faster (this is reminiscent of what happens if the monopole term for
a localized charge distribution vanishes; note that our charge distribution extends to infinity and is thus not localized).
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Evaluating the LHS of (13) for the plane wave gives (using Einstein’s summation convention)

∂jẼj = Ẽ0,j∂je
i(k·r−ωt) = Ẽ0,j ikje

i(k·r−ωt) = ik · Ẽ. (14)

Setting this equal to the RHS of (13) then gives

k · Ẽ = 0, (15)

i.e. Ẽ is perpendicular to k.

To show that B is perpendicular to k, we can e.g. start from Gauss’s law for B, i.e. ∇ ·B = 0, which
also holds for the complex version of the magnetic field, i.e.

∇ · B̃ = 0. (16)

The evaluation of the LHS of (16) is done in exactly the same way as for the LHS of (13). Thus it
immediately follows that also B̃ is perpendicular to k.

To show (ET4), we start from Faraday’s law as applied to the complex versions of the fields:

∇× Ẽ = −∂B̃

∂t
. (17)

Now consider the ℓ’th component of this equation. Its LHS is (here ϵℓnm is the Levi-Civita symbol)

ϵℓmn∂mẼn = ϵℓmnẼ0,n∂mei(k·r−ωt) = ϵℓmnẼ0,nikmei(k·r−ωt) = iϵℓmnkmẼn = i(k × Ẽ)ℓ, (18)

while its RHS is iωB̃ℓ. Equating these gives (ET4).

Remarks:

� Note that (ET4) implies the property B̃ ⊥ k. This is therefore an alternative proof of this property.

� Similarly, an alternative proof of the property Ẽ ⊥ k could be given as follows: Start from the
Maxwell equation ∇×H = jf + ∂D/∂t, with jf = 0, D = ϵE and H = B/µ. Applying this to
the complex versions of the fields, and working out the derivatives in the same way as for Faraday’s
law above, one finds that Ẽ is proportional to k × B̃, from which the desired property follows.

� In the calculations above, I worked out the divergences and curls in terms of the vector components
involved. Alternatively, one can work out these quantities using the vector identities (5) and (7),
respectively, in the general formula set.

2. (Being very elementary and not requiring any course-specific knowledge, this question was given a
very low weight. It was included to help put you on the right track for the next question.)

B̃ =
1

ω
(k × Ẽ) =

k

ω
Ẽ0e

i(k·r−ωt)(cos θ ẑ + sin θ x̂)× ŷ =
1

v
Ẽ0e

i(k·r−ωt)(− cos θ x̂+ sin θ ẑ). (19)

(b) Some general remarks: (i) E1 = EI +ER, E2 = ET , and ditto for B. (ii) In this system, the com-
ponent perpendicular (⊥) to the interface is the z component, and the part parallel (∥) to the interface
is spanned by the x and y components.

Each boundary condition (BC) can be applied to the complex version of the fields. We will first consider
the two boundary conditions (BC’s) involving the electric field. We note that the electric field of all
three waves (I, R, T) points along the y axis.

The BC ϵẼ⊥
1 = ϵ2Ẽ

⊥
2 becomes ϵ1Ẽ

z
1 = ϵ2Ẽ

z
2 . Thus since Ẽz = 0 for all three waves, this BC reduces to

0 = 0 and is therefore trivially satisfied, giving no information about how the three waves are related.
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The BC Ẽ
∥
1 = Ẽ

∥
2 simplifies to Ẽy

1 = Ẽy
2 . Using the given fact that the exp(. . .) factors are identical for

all three waves at the interface, this further simplifies to

Ẽ0I + Ẽ0R = Ẽ0T . (20)

Next we consider the magnetic field. First, from the figure in the exam text one can see that

kI = kI(cos θI ẑ + sin θI x̂), (21)

kR = kR(− cos θR ẑ + sin θR x̂), (22)

kT = kT (cos θT ẑ + sin θT x̂), (23)

where kw = |kw| > 0. Using (ET4) and adapting (19) (beware the sign change resulting from the negative
z component of kR) gives

B̃I = =
1

v1
Ẽ0Ie

i(kI ·r−ωIt)(− cos θI x̂+ sin θI ẑ), (24)

B̃R = =
1

v1
Ẽ0Re

i(kR·r−ωRt)(cos θR x̂+ sin θR ẑ), (25)

B̃T = =
1

v2
Ẽ0T e

i(kT ·r−ωT t)(− cos θT x̂+ sin θT ẑ). (26)

Now we can use these expressions to consider the two BC’s for the magnetic field. The BC B̃⊥
1 = B̃⊥

2

becomes B̃z
1 = B̃z

2 . (Although this BC will not result in additional information (cf. the remark in the
exam text), I consider it here for completeness.) Using that the exp-factors are identical for all three
waves at the interface, this BC simplifies to

1

v1
(Ẽ0I sin θI + Ẽ0R sin θR) =

1

v2
Ẽ0T sin θT . (27)

Using θR = θI , n1 sin θI = n2 sin θT and v1/v2 = n2/n1, this expression simplifies to (20).

Finally, the BC B̃
∥
1 = B̃

∥
2 simplifies to B̃x

1 = B̃x
2 . Again using the identity of the exp-factors, this further

simplifies to
1

v1
(−Ẽ0I cos θI + Ẽ0R cos θR) = −

1

v2
Ẽ0T cos θT . (28)

Using θR = θI , v1/v2 = n2/n1, and the definitions of α and β, this gives

Ẽ0I − Ẽ0R = αβẼ0T . (29)

(c) Adding and subtracting (20) and (29) gives the two equations 2Ẽ0I = (1 + αβ)Ẽ0T and 2Ẽ0R =
(1− αβ)Ẽ0T , and dividing the former equation by the latter gives

Ẽ0R

Ẽ0I

=
1− αβ

1 + αβ
. (30)

We see that the reflected wave would vanish if the ratio on the RHS were to vanish. Furthermore, writing
Ẽ0I = |Ẽ0I |eiδI and Ẽ0R = |Ẽ0R|eiδR , the LHS becomes

|Ẽ0R|
|Ẽ0I |

ei(δR−δI), (31)

so the phase difference δR − δI (defined up to an integer multiple of 2π) is also determined by the ratio
on the RHS of (30).

We must therefore consider the product αβ which determines this ratio. We are given that n1 and
n2 are both real and ≥ 1, with n1 < n2. It follows that β = n2/n1 is real and > 1. Furthermore,
sin θT = (n1/n2) sin θI < (n1/n2) · 1 < 1 so θT can interpreted as a conventional physical angle for all
θI . Moreover, θT will lie between 0 and θT,max = arcsin(n1/n2) < π/2, so cos θT is a positive number
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(equal to cos θT =
√
1− sin2 θT ), and thus α = cos θT / cos θI is real and positive. Thus αβ is a positive

real number.

It follows that the ratio on the RHS of (30) is always real. Thus the phase difference δR − δI can only
take the values 0 (this happens if the ratio is positive) or π (this happens if the ratio is negative), corre-
sponding to the reflected and incident waves being “in phase” and “out of phase”, respectively. (If the
ratio is 0, the reflected wave vanishes, so the phase difference is not defined then.)

Furthermore, since the denominator 1 + αβ is always positive, the sign of the ratio is the same as the
sign of the numerator 1 − αβ, and the ratio would vanish if and only if the numerator vanishes. Thus
we arrive at the following scenario:

� if αβ > 1, the phase difference is π

� if αβ = 1, the reflected wave vanishes

� if αβ < 1, the phase difference is 0.

We have

αβ =
cos θT
cos θI

n2

n1
=

√
1− sin2 θT√
1− sin2 θI

n2

n1
=

√
1− (n2

1/n
2
2) sin

2 θI√
1− sin2 θI

n2

n1
=

√
β2 − sin2 θI

1− sin2 θI
. (32)

Consider the ratio under the square root. Since β > 1, the numerator is greater than the denominator,
so the ratio is greater than 1, so the square root is greater than 1. Hence αβ > 1 for all θI . Therefore
the phase difference is π for all θI , and the reflected wave never vanishes.

Remark: The angle(s) θI for which the reflected wave vanishes are referred to as Brewster’s angles. Thus
there are no Brewster angles in the setup considered here, for which the electric field is perpendicular to
the plane of incidence.

Problem 3

(a) 1. The charge on the upper sphere is q̃(t), and the charge on the lower sphere is −q̃(t). Also, there
is no net charge anywhere else (in particular, the wire is electrically neutral). Thus

ρ̃(r, t) = q̃(t)[δ(3)(r − dẑ/2)− δ(3)(r + dẑ/2)] = q̃(t)δ(x)δ(y)[δ(z − d/2)− δ(z + d/2)], (33)

where δ is Dirac’s delta function and δ(3) its 3-dimensional generalization.

2. From (33) it follows that

∂ρ̃

∂t
=

dq̃(t)

dt
δ(x)δ(y)[δ(z − d/2)− δ(z + d/2)]. (34)

From (ET18) it follows that

∇ · j̃ =
dq̃(t)

dt
∇ · ẑ δ(x)δ(y)Θ(d/2− |z|) = dq̃(t)

dt
δ(x)δ(y)

∂

∂z
Θ(d/2− |z|)︸ ︷︷ ︸

=−sgn(z)δ(d/2−|z|)

= −dq̃(t)

dt
δ(x)δ(y)[δ(z − d/2)− δ(z + d/2)]. (35)

(Here a derivation of, or at least a motivation for, the expression for the z-derivative of Θ(d/2 − |z|)
should also be provided; this can be done in many different ways.) One sees that ∂ρ̃/∂t = −∇ · j̃, i.e.

∂ρ̃

∂t
+∇ · j̃ = 0. (36)
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This is the so-called continuity equation. That it holds is not some kind of special property of the system
under consideration; quite the contrary, it is true for any system, being an expression of (local) conser-
vation of electric charge.

Remark: When writing down the expression for ρ̃(t), we treated the metal spheres as points. This is
also an essential assumption underlying the expression (ET18) for j̃. That this assumption affects both
ρ̃ and j̃ is not surprising in light of the continuity equation relating these quantities.

(b) Using the standard Lorenz gauge expression Eq. (ET24) in the formula set, we have

Ṽ (r, t) =
1

4πϵ0

∫
d3r′

ρ̃(r′, tret)

|r − r′|
. (37)

where tret = t− |r − r′|/c is the retarded time. Inserting (33) gives

Ṽ (r, t) =
1

4πϵ0

∫
d3r′

q̃(tret)δ(x
′)δ(y′)[δ(z′ − d/2)− δ(z′ + d/2)]

|r − r′|
. (38)

Carrying out the integral (which is simple due to the Dirac delta functions) gives

Ṽ (r, t) =
1

4πϵ0

[
q̃(t− |r − dẑ/2|/c)
|r − dẑ/2|

− q̃(t− |r + dẑ/2|/c)
|r + dẑ/2|

]
. (39)

Here
q̃(t− |r ∓ dẑ/2|/c) = q0 exp[−iω(t− |r ∓ dẑ/2|/c)] = q0e

−iωteik|r∓dẑ/2|. (40)

Thus |r ∓ dẑ/2| appears both in the exponent and in the denominator. We have

|r ∓ dẑ/2| =
√
(r ∓ dẑ/2) · (r ∓ dẑ/2) =

√
r2 ∓ r · ẑd+ d2/4 = r

√
1∓ r̂ · ẑ d

r
+

(
d

2r

)2

. (41)

Since d≪ r, we try to expand the square root in the small parameter d/r. The most naive approximation
one might try is to only use the zeroth order term, which corresponds to replacing |r ∓ dẑ/2| by r.
However, making this replacement both in the exponent and in the denominator causes the two terms
in (39) to cancel each other, leaving Ṽ = 0, while we would expect that Ṽ would have to decay like 1/r
in order to contribute to the radiation fields. Thus we must try a less naive approximation. We try a
first-order expansion in d/r as the simplest next approximation. Using (1+u)n ≈ 1+nu for u≪ 1 gives

|r ∓ dẑ/2| ≈ r

(
1∓ 1

2
r̂ · ẑ d

r

)
= r ∓ d

2
cos θ, (42)

where we used r̂ · ẑ = cos θ. Using this first-order expansion in the exponent, while keeping the simplest,
zeroth-order expansion in the denominator, gives

Ṽ (r, t) ≈ 1

4πϵ0
q0e

−iωt · 1
r
· eikr

[
e−ik(d/2) cos θ − eik(d/2) cos θ

]
= − iq0

2πϵ0
sin

(
kd

2
cos θ

)
ei(kr−ωt)

r
. (43)

(Including the first-order term also in the expansion of the denominator would give corrections to Ṽ that
decay like 1/r2, which would not contribute to radiation.)

Remark: It can be checked that the same approximation scheme as used here can also be used to derive
Eq. (ET19) for Ã(r, t).

(c) We use B = ∇×A. To calculate the curl, it is most convenient to make use of the general expression
for the curl in a particular coordinate system. We see that Ã involves the coordinates r and θ associated
with the spherical coordinate system, as well as the unit vector ẑ associated with the cylindrical coordi-
nate system. It will be seen that using spherical coordinates gives the simplest calculation, so I consider
that before cylindrical coordinates. (The general expressions for the curl in spherical and cylindrical
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coordinates are given in the general formula set.)

Spherical coordinates. In the general formula set we see that ẑ = cos θ r̂− sin θ θ̂. Inserting this into
Eq. (ET19) gives an expression for Ã involving only spherical coordinates. We get

Ã = Ãrr̂ + Ãθθ̂ + Ãϕϕ̂ (44)

where

Ãr = − icq0µ0

2π
sin

(
kd

2
cos θ

)
exp(i(kr − ωt))

r
, (45)

Ãθ =
icq0µ0

2π
tan θ sin

(
kd

2
cos θ

)
exp(i(kr − ωt))

r
, (46)

Ãϕ = 0. (47)

Taking into account the form of these components (note that neither Ãr nor Ãθ depend on ϕ), many
terms in the general expression for the curl in spherical coordinates vanish, leaving

∇× Ã =
1

r

[
∂

∂r
(rÃθ)−

∂Ãr

∂θ

]
ϕ̂. (48)

One sees that the second term, which involves the factor ∂Ãr/∂θ, decays like 1/r2 and will thus not
contribute to radiation. This leaves the contribution from the first term, giving

B̃rad(r, t) = −
ckq0µ0

2π
tan θ sin

(
kd

2
cos θ

)
exp(i(kr − ωt))

r
ϕ̂. (49)

Cylindrical coordinates. Using that Ãs = Ãϕ = 0, the general expression for the curl in cylindrical
coordinates simplifies to

∇× Ã =
1

s

∂Ãz

∂ϕ
ŝ− ∂Ãz

∂s
ϕ̂. (50)

Beware that the partial derivatives here should be evaluated with the other cylindrical coordinates held
constant, while our expression for Ãz instead depends on the spherical coordinates r and θ. One approach
would be to first express Ãz in cylindrical coordinates by using the expressions for spherical coordinates
in terms of cylindrical coordinates:

r =
√
s2 + z2, (51)

cos θ =
z√

s2 + z2
, (52)

ϕ = ϕ. (53)

(Here I chose to use cos θ instead of θ, as this will simplify some calculations.) However, this approach
might give quite nasty expressions. Instead, we can express the partial derivatives as

∂Ãz

∂ϕ
≡ ∂Ãz

∂ϕ

∣∣∣
s,z

=
∂r

∂ϕ

∣∣∣
s,z

∂Ãz

∂r

∣∣∣
θ,ϕ

+
∂ cos θ

∂ϕ

∣∣∣
s,z

∂Ãz

∂ cos θ

∣∣∣
r,ϕ

, (54)

∂Ãz

∂s
≡ ∂Ãz

∂s

∣∣∣
ϕ,z

=
∂r

∂s

∣∣∣
ϕ,z

∂Ãz

∂r

∣∣∣
θ,ϕ

+
∂ cos θ

∂s

∣∣∣
ϕ,z

∂Ãz

∂ cos θ

∣∣∣
r,ϕ

. (55)

The expression in (54) vanishes because neither r nor θ depend on ϕ (this can be seen from (51) and
(52); more simply it follows from the fact that ϕ is also a spherical coordinate and thus independent of
r and θ). To work out the expression in (55) we use (51)-(52) to find

∂r

∂s

∣∣∣
ϕ,z

=
s√

s2 + z2
=

r sin θ

r
= sin θ, (56)

∂ cos θ

∂s

∣∣∣
ϕ,z

= z(s2 + z2)−3/2(−1/2) · 2s = − sz

(s2 + z2)3/2
= −r sin θ r cos θ

r3
= − sin θ cos θ

r
. (57)
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Note that ∂ cos θ/∂s|ϕ,z is proportional to 1/r. As also ∂Ãz/∂ cos θ|r,ϕ can be seen to decay like 1/r,
their product will decay like 1/r2 and thus not contribute to radiation. Finally,

∂Ãz

∂r

∣∣∣
θ,ϕ

=
ckq0µ0

2π

sin
(
kd
2 cos θ

)
cos θ

exp(i(kr − ωt))

r
(58)

which was obtained by differentiating exp(i(kr−ωt)) (another contribution, ∝ 1/r2, follows by differen-
tiating 1/r and is therefore neglected as it doesn’t contribute to radiation). This leads to the expression
(49) for B̃rad.

We see that the radiation fields Ẽrad(r, t) and B̃rad(r, t) are outgoing spherical waves of frequency ω, in
phase, with perpendicular directions, and magnitudes related by

|B̃rad|
|Ẽrad|

=
cµ0

1/ϵ0
= cµ0ϵ0 =

1

c
(59)

(where we used ϵ0µ0 = 1/c2). These properties are all as expected.

(d) As each field contributes the same angular factor tan θ sin((kd/2) cos θ), the angular dependence of
the radiation pattern of the Poynting vector S (proportional to E ×B) becomes

tan2 θ sin2
(
kd

2
cos θ

)
. (60)

We see that the radiation pattern is independent of ϕ, which is easy to understand from the symmetry
of the system.

For kd ≪ 1, we can use sin v ≈ v for v ≪ 1 to approximate sin((kd/2) cos θ) ≈ (kd/2) cos θ, so the
angular dependence of the radiation pattern simplifies to

tan2 θ cos2 θ = sin2 θ. (61)

The radiation is thus maximal for θ = π/2 and minimal (vanishes) for θ = 0 and π. When plotted as a
function of θ and ϕ the pattern takes a donut shape.

We are familiar with this donut pattern from our investigation in the lectures of the radiation from an
electric dipole. There we considered the limit of a point dipole from the outset, while in this problem
we only took this limit at the end (kd≪ 1 being equivalent to d≪ c/ω). It is therefore no surprise that
we recover the same radiation pattern.
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