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NTNU Institutt for fysikk

Contact during the exam:
Professor Arne Brataas
Telephone: 90 64 31 70

Exam in TFY4240 Electromagnetic Theory
May 22, 2024
09:00–13:00

Allowed help: Alternativ C
A permitted basic calculator and a mathematical formula book (Rottmann or
equivalent).

This problem set consists of 9 pages.

This exam consists of 3 problems, each containing several subproblems. There are, in total,
10 subproblems. Each subproblem (1a-1b-...) will be given equal weight in the grading.

I will be available for questions related to the problems themselves (though not the an-
swers!). I plan to do one round around 10.30.

The problems are given in English only. Do not hesitate to ask if you have any language
problems related to the exam set. You are free to use either English or Norwegian for your
answers.

Some formulas are given in the appendix on the pages following the last problem.

Good luck!
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Problem 1.

a) Demonstrate that charge conservation follows from Maxwell‘s equations.

Solution

We compute the rate of change of Gauss‘s law (70) and make use of Ampere‘s law
(73):

∂t∇ ·D = ∂tρf , (1)

∇ · ∂tD = ∂tρf , (2)

∇ · (∇×H − Jf ) = ∂tρf . (3)

Using ∇ · (∇×H) = 0, we find

∂tρf +∇ · Jf = 0 , (4)

which is the continuity equation that reflects charge conservation. The charge current
out of any small volume element compensates for the rate of change of the charge
within the same volume.

b) Demonstrate that when we express the electric field E and the magnetic induction
B as

E = −∇V − ∂tA , (5)

B = ∇×A , (6)

in terms of the scalar potential V and the vector potential A, then, two of Maxwell‘s
equations are automatically satisfied.

Solution

We consider the Gauss‘s law for the magnetic induction (71) and insert the expression
(6)

∇ ·B = 0 , (7)

∇ · (∇×A) = 0 , (8)

to see that this expression is automatically satisfied because ∇ · (∇×A) = 0 for any
function A.

Next, we consider Faraday‘s law and insert the expressions (5) and (6):

∇×E = −∂B

∂t
, (9)

∇× (−∇V − ∂tA) = −∂t∇×A , (10)

−∂t∇×A = −∂t∇×A , (11)

which is always satisifed, where we used that ∇×∇V = 0.
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c) Find the equations the scalar potential V and the vector potential A introduced in
(5) and (6) must satisfy in linear and isotropic materials.

Solution

We use the constitute relation D = ϵE and Gauss‘s law (70) to find

∇ ·E = ρf/ϵ , (12)

∇ · (−∇V − ∂tA) = ρf/ϵ , (13)(
∇2 − 1

v2
∂2
t

)
V = −ρf/ϵ− ∂t

(
∇ ·A+

1

v2
∂tV

)
, (14)

where the velocity of light in the material is v = 1/
√
ϵµ.

Next, we use the constitute relations B = µH and D = ϵE with Ampere‘s law (73)
to find

∇×H = Jf +
∂D

∂t
, (15)

∇× (∇×A) = µJf + ϵµ∂t (−∇V − ∂tA) , (16)(
∇2 − 1

v2
∂2
t

)
A = −µJf +∇ ·

(
∇A+

1

v2
∂tV

)
. (17)

Problem 2.
We consider a vacuum-metal structure. In a Cartesian coordinate system with unit vectors
x̂, ŷ, and ẑ, the vacuum exists for all x and y when z > 0. The metal is for all x and y
when z < 0. The vacuum-metal interface is at z = 0.

Inside the metal, Ohm‘s law applies

Jf = σE , (18)

where σ is the conductivity, E is the electric field, and Jf is the free charge current density.
There are no free charges, ρf = 0. There are also no free surface charges and no free surface
charge currents.

We consider an incident TE (transverse electric) wave from the vacuum side that can be
reflected off the metal. We assume the wave propagates straight towards the interface.
With these assumptions, the wave depends on the spatial coordinate z and the time t. We
use complex notation. On the vacuum side, the wave is then

Ev(z, t) = E0x̂
[
ei(kz−ωt) + rei(−kz−ωt)

]
, (19)

where E0 is the amplitude, r is the reflection amplitude, k is the wave vector, and ω is the
frequency.
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In the metal, the wave is of the form

Em(z, t) = E0x̂te
i(κz−ωt) , (20)

where t is a transmission coefficient. Using Maxwell‘s equations, one can show that the
electric field should satisfy the wave equation(

∇2 − 1

v2
∂2
t

)
E = µ∂tJf , (21)

where v is the velocity of light in the material.

a) Using Maxwell‘s equations, derive the relation between the wave vector k and the
frequency ω in vacuum and the relation between the wave vector κ and the frequency
ω in the metal.

Solution

In a vacuum, the velocity of light v = c. Inserting the wave (19) into Maxwell‘s
equations represented by (21), we find

−k2 + ω2/c2 = 0 (22)

so that
k = ω/c . (23)

Similarly, in the metal, we insert the wave (20) into Maxwell‘s equations represented
by (21) to find

−κ2 + ω2/v2 = −µσiω (24)

so that
κ = ±

(
ω2/v2 + iµσω

)1/2
(25)

The sign of κ is determined by the condition that the wave should decay into the
metal, e.g. Im[κ] < 0.

b) Demonstrate that the magnetic induction in the vacuum Bv and in the metal Bm

corresponding to the electric field of (19) and (20) are

Bv(z, t) = E0
k

ω
ŷ
[
ei(kz−ωt) − rei(−kz−ωt)

]
, (26)

Bm(z, t) = E0
κ

ω
ŷtei(κz−ωt) . (27)

Solution

We first note that

∇× (x̂f(z, t)) = (x̂∂x + ŷ∂y + ẑ∂z)× x̂f(z, t) , (28)

= ŷ∂zf(z, t) , (29)
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for arbitrary functions f(z, t).

We use Faraday‘s law that relates the curl of the electric field to the rate of change
of the magnetic induction (72). In the vacuum, we find

∇×E = −∂tB , (30)

E0ŷik
[
ei(kz−ωt) − rei(−kz−ωt)

]
= −E0ŷ

k

ω
(−iω) ŷ

[
ei(kz−ωt) − rei(−kz−ωt)

]
(31)

which is fulfilled for any E0, k, ω, and r.

Similarly, in the metal, we have

∇×E = −∂tB , (32)

E0ŷiκte
i(κkz−ωt) = −E0ŷ

κ

ω
(−iω) ŷtei(κz−ωt) (33)

which is fulfilled for any E0, k, ω, and t.

c) Determine the reflection and transmission coefficients r and t in terms of the wave
vectors k, κ, the frequency ω, and, possibly, the magnetic permeability in vacuum µ0

and the magnetic permeability in the metal µ.

Solution

In our case, the normal vector to the interface is ên = ẑ. Using the boundary
condition (76) and the expressions for the electric fields of (19) and (20), we find at
z = 0 that

E0ẑ× x̂ [1 + r − t] = 0 (34)

In other words
t = 1 + r . (35)

Similarly, by using the boundary condition (77), the fact that there are no free surface
charge currents, the expressions for the magnetic induction of (26) and (27), and the
constitute relations Bv = µ0Hv and Bm = µHm , we find at z = 0 that

E0ẑ× ŷ

[
k

ω

1

µ0

(1− r)− κ

ω

1

µ
t

]
= 0 (36)

so that

t =
k

κ

µ

µ0

(1− r) . (37)

Inserting Eq. (35) into Eq. (37), we solve for r and t to find

r =
kµ− κµ0

kµ+ κµ0

, (38)

t =
2kµ

kµ+ κµ0

. (39)
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Problem 3.
We consider a time-dependent charge density ρ(r, t) and a time-dependent charge current
density J(r, t) in a vacuum. In the Lorentz gauge

∇ ·A+
1

c2
∂tV = 0 , (40)

the scalar potential V and the vector potential A are

V (r, t) =
1

4πϵ0

∫
d3r1

ρ(r1, tr)

|r − r1|
, (41)

A(r, t) =
µ0

4π

∫
d3r1

J(r1, tr)

|r − r1|
, (42)

where the retarded time is
tr = t− |r − r1|/c . (43)

a) Demonstrate that the magnetic induction associated with the potentials (41) and
(42) is

B(r, t) =
µ0

4π

∫
d3r1

[
J(r1, tr)

∆2
+

J̇(r1, tr)

c∆

]
×∆ , (44)

where ∆ = r1 − r and ∆ = |∆|.
Solution

The magnetic induction B can be found from the vector potential A from the relation

B(r, t) = ∇×A(r, t) . (45)

We use [
∇× J(r1, tr)

|r − r1|

]
i

= ϵijk∂j
Jk(r1, tr)

|r − r1|
, (46)

= ϵijk(∂jtr)
J̇k(r1, tr)

|r − r1|
+ ϵijkJk(r1, tr)∂j

1

|r − r1|
. (47)

(48)

Next, we use

∂jtr = −1

c
∂j|r − r1| , (49)

= − ∆

c∆2
(50)

and

∂j
1

|r − r1|
= −∆

∆2
(51)
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to find

∇× J(r1, tr)

|r − r1|
= − 1

c∆
∆× J̇(r1, tr)−

1

∆2
∆× J(r1, tr) (52)

so that we have demonstrated Eq. (44).

b) Demonstrate that the electric field associated with the potentials (41) and (42) is

E(r, t) =
1

4πϵ0

∫
d3r1

[
ρ(r1, tr)

∆2
∆̂+

ρ̇(r1, tr)

c∆
∆̂− J̇(r1, tr)

c2∆
.

]
, (53)

where ∆ = r1 − r, ∆ = |∆|, and ∆̂ = ∆/∆.

Solution

The electric field is
E = −∇V − ∂tA . (54)

We compute

∂tA =
µ0

4π

∫
d3r1

J̇(r1, tr)

|r − r1|
, (55)

=
1

4πϵ0

∫
d3r1

J̇(r1, tr)

c2|r − r1|
, (56)

where we have used that 1/c2 = µ0ϵ0.

We also compute

∇V =
1

4πϵ0

∫
d3r1∇

ρ(r1, tr)

|r − r1|
(57)

=
1

4πϵ0

∫
d3r1

[
−ρ(r1, tR)

∆̂

∆2
− 1

c
ρ̇(r1, tr)

∆̂

∆

]
(58)

Inserting Eqs. (56) and (58) into Eq. (54), we find Eq. (53).

c) We consider a dipole configuration. A charge q(t) is at point d0/2, and a charge −q(t)
is at point −d0/2. We use complex notation and assume that there is a harmonic
time dependence of the charge

q(t) = qoe
−iωt . (59)

Demonstrate that the scalar potential is (in the Lorentz gauge)

V (r, t) =
q0

4πϵ0
e−iωt

[
eiωr+/c

r+
− eiωr−/c

r−

]
, (60)
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where
r± = |r ∓ d0/2| = r

√
1∓ r · d0 + (d0/2)2 . (61)

Solution

We use Eq. (41) to find

V (r, t) =
q0

4πϵ0

∫
dr31

e−iω(t−|r−r1|/c

|r − r1|
[δ(r1 − d0/2)− δ(r1 + d0/2)] , (62)

=
q0e

−iωt

4πϵ0

[
eiωr+/c

r+
− eiωr−/c

r−

]
(63)

as we should demonstrate.

d) Compute the scalar potential V (r, t) in the radiation zone when the distance r = |r|
is much larger than the separation between the charges d0 = |d0| and when the
distance r is much larger than the wavelength λ = 2π/k, where k = ω/c.

Solution

In the radiation zone, we expand to the lowest order the expressions for the distances
r+ and r−:

r± ≈ r (1∓ r̂ · d0/2r) (64)

so that
1

r±
≈ 1

r
(1± r̂ · d0/2r) . (65)

We also use

eikr± ≈ eikre∓ikr·d0/2r2 ≈ eikr
(
1∓ ikr · d0/2r

2
)
. (66)

We then find

V (r, t) ≈ q0
4πϵ0

ei(kr−ωt)

r

[
(1− ikr · d0/2r)

(
1 + r · d0/2r

2
)
− (1 + ikr · d0/2r)

(
1− r · d0/2r

2
)]

,

(67)

≈ q0
4πϵ0

ei(kr−ωt)

r

[
−ikr · d0/r + r · d0/r

2
]

(68)

In the radiation zone, the second term can be neglected, and we find

V (r, t) ≈ q0
4πϵ0

ei(kr−ωt)

r
[−ikr · d0/r] . (69)



Exam in TFY4240 Electromagnetic Theory, May 2024, 2024 Page 8 of 9

A Maxwell‘s Equations

Maxwell‘s equation in vacuum for the electric field E, the displacement field D, the mag-
netic induction B, and the magnetic field H are

∇ ·D = ρf , (70)

∇ ·B = 0 , (71)

∇×E = −∂B

∂t
, (72)

∇×H = Jf +
∂D

∂t
, (73)

in terms of the free charge density ρf and the free charge current density Jf .

B Constitute Relations

In linear and isotropic media, we have

D = ϵE , (74)

B = µH , (75)

where ϵ is the dielectric constant and µ is the magnetic permeability.

C Boundary Conditions for Electromagnetic Fields

At interfaces between material 1 and material 2, the boundary conditions are

ên × (E1 −E2) = 0 , (76)

ên × (H1 −H2) = Ks , (77)

ên · (D1 −D2) = σS , (78)

ên · (B1 −B2) = 0 , (79)

where ên is a unit vector normal to the interface, σS is the surface charge density, and Ks

is the surface charge current density.

D Spherical Coordinates

In spherical coordinates r, θ, and ϕ, the gradient is

∇t = r̂
∂t

∂r
+ θ̂

1

r

∂t

∂θ
+ ϕ̂

1

r sin θ

∂t

∂ϕ
. (80)
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The divergence is

∇ · v =
1

r2
∂

∂r

(
r2vr

)
+

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vϕ
∂ϕ

. (81)

The Laplacian is

∇2 =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
. (82)

E Products of matrices

A · (B ×C) = B · (C ×A) = C · (A×B) , (83)

A× (B ×C) = B (A ·C)−C (A ·B) . (84)

F Integral Theorems

The divergence theorem is ∫
d3r∇ ·A =

∮
A · dS . (85)

Stoke‘s theorem (or the curl theorem) is∫
(∇×A) · dS =

∮
A · dl . (86)

G Some Useful Results

We define R = r − r1, R = |R|, and R̂ = R/R. Then

∇ · R̂

R2
= 4πδ(R) , (87)

∇ 1

R
= − R̂

R2
, (88)

∇2 1

R
= −4πδ(R) . (89)


