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NTNU Institutt for fysikk

Contact during the exam:
Professor Arne Brataas
Telephone: 90 64 31 70

Exam in TFY4240 Electromagnetic Theory
August 9, 2024
09:00–13:00

Allowed help: Alternativ C
A permitted basic calculator and a mathematical formula book (Rottmann or
equivalent).

This problem set consists of 14 pages.

This exam consists of 4 problems, each containing several subproblems. There are in total
10 subproblems. Each subproblem (1a-1b-...) will be given equal weight in the grading.

The problems are given in English only. Do not hesitate to ask if you have any language
problems related to the exam set. For your answers, you are free to use either English or
Norwegian.

Some formulas are given in the appendix on the pages following the last problem.

Good luck!
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Problem 1.

a) We consider the system shown in Fig. 1. The metals are grounded, and the potential

Metal, V=0

Metal, V=0

y=a

y=-b

y=0

y

x

Figure 1: A sheet of surface charge at y = 0 is between two grounded metal conductors
at y = a and y = −b. Although not shown, the system is supposed to be infinitely
homogenous in the x and z directions. At y = 0, there is a surface charge density σ(x, t)
that may depend on the spatial coordinate x and the time t..

is V = 0 therein. Between the metals, there is a homogenous surface charge density
σ at y = 0. Above the surface charge density, when 0 < y < a, the dielectric constant
is ϵ1. Below the surface charge density, when 0 > y > −b, the dielectric constant is
ϵ2.

We assume the surface charge density is static and varies as σ(x) = σ0 cos kx.

Introduce the scalar potential V , solve the equation for V , and determine the elec-
trostatic electric field E = −∇V between the metals. Note that the electric field
may be inhomogeneous.

Solution

Symmetry dictates that the potential V only depends on the coordinates y and x.
From Gauss‘s law (99), we find the Laplace equation for the potential in between the
metals when y ̸= 0: (

∂2
x + ∂2

y

)
V (x, y) = 0 . (1)

This is a separable differential equation. In general, the solution above (a) or below
(b) the surface charges is a linear combination of contributions for all wave vectors
κ, Vi(x, y) =

∫
dκViκ(x, y), where i = a or i = b. Since we must have V (x, y = a) = 0
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and V (x, y = −b) = 0 and since the electric fields must vary along the x direction as
the surface charge density, we must have κ = k and the solution must be of the form

Va(x, y) = A cos kx sinh k (y − a) , (2)

Vb(x, y) = B cos kx sinh k (y + b) . (3)

The associated components of the electric field are then

Ea,x(x, y) = Ak sin kx sinh k (y − a) , (4)

Eb,x(x, y) = Bk sin kx sinh k (y + b) (5)

and

Ea,y(x, y) = −Ak cos kx cosh k (y − a) (6)

Eb,y(x, y) = −Bk cos kx cosh k (y + b) (7)

The boundary conditions are for the tangential field (105)

Ex(x, y = 0+)− Ex(x, y = 0−) = 0 , (8)

Ea,x(x, y = 0)− Eb,x(x, y = 0) = 0 , (9)

Ak sin kx sinh (−ka)−Bk sin kx sinh kb = 0 (10)

which implies that

A = −B
sinh kb

sinh ka
. (11)

The boundary conditions for the normal field component is (107)

ϵ1Ey(x, y = 0+)− ϵ2Ey(x, y = 0−) = σ0 cos kx (12)

−ϵ1Ak cos kx cosh (−ka) + ϵ2Bk cos kx cosh kb = σ0 cos kx , (13)(
ϵ1
sinh kb

sinh ka
cosh ka+ ϵ2 cosh kb

)
Bk = σ0 (14)

so that

A = − σ0 sinh kb

k (ϵ1 sinh kb cosh ka+ ϵ2 cosh kb sinh ka)
, (15)

B =
σ0 sinh ka

k (ϵ1 sinh kb cosh ka+ ϵ2 cosh kb sinh ka .)
(16)

The computed coefficients A and B then determine the electric fields expressed in
Eqs. (4), (5), (6), and (7).
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b) We consider a material that is linear and isotropic.

The Poynting vector S and the electromagnetic energy density u are determined by

S = E ×H (17)

u =
1

2
(E ·D +B ·H) . (18)

Show that

∂u

∂t
+E · J +∇ · S = 0 . (19)

Explain what this equation means and what the three terms on the left-hand side
describe.

Solution

We use

∇ · S = ∇ · (E ×H) , (20)

= H · (∇×E)−E · (∇×H) (21)

and insert Faraday‘s law (101) and Ampere‘s law (102) to find

∇ · S = H · (−∂tB)−E · (J + ∂tD) , (22)

= −1

2
∂t

(
1

µ
B2 + ϵE2

)
−E · J , (23)

= −∂tu−E · J (24)

which is the equation we should prove.

The equation expresses the conservation of energy (electromagnetic and mechanical).
For an infinitesimal volume element, the first term in Eq. (19) (∂tu) describes energy
increase per unit time, the second term (J ·E) describes the power transformed to
mechanical energy for the charges within the volume, and the last term (∇ · S) the
energy flow out of the system.

Problem 2.
We consider vacuum. In the initial reference frame F1, the electric fieldE and the magnetic
induction B satisfy the wave equation[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2
t

]
E(r, t) = 0 , (25)[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2
t

]
B(r, t) = 0 . (26)
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The electric field E and the magnetic induction B are also related via Faraday‘s law (101).
We consider another frame of reference F2 with spatial coordinate R = (X, Y, Z) and
temporal coordinate τ that is related to the original reference frame with spatial coordinate
r = (x, y, z) and temporal coordinate t by the Lorentz transformation

τ = γ
(
t− vx/c2

)
, (27)

X = γ (x− vt) , (28)

Y = y , (29)

Z = z , (30)

where

γ =
1√

1− (v/c)2
(31)

is the Lorentz factor. In other words, the initial reference frame F1 is moving with a
velocity v along the x direction with respect to the other reference frame F2. We also have
the inverse relationship

t = γ
(
τ + vX/c2

)
, (32)

x = γ (X + vτ) , (33)

y = Y , (34)

z = Z , (35)

a) What are the wave equations for the electric field E and the magnetic induction B
in terms of the spatial coordinate R and temporal coordinate τ?

Solution

We transform the coordinates. For the spatial coordinates, we find

∂

∂x
=

∂X

∂x

∂

∂X
+

∂τ

∂x

∂

∂τ
, (36)

= γ
∂

∂X
− γ

v

c2
∂

∂τ
, (37)

∂

∂Y
=

∂

∂y
, (38)

∂

∂Z
=

∂

∂z
. (39)

For the temporal coordinate, we have

∂

∂t
=

∂τ

∂t

∂

∂τ
+

∂X

∂t

∂

∂X
, (40)

= γ
∂

∂τ
− γv

∂

∂X
. (41)
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We then find that

∂2

∂x2
= γ2 ∂2

∂X2
+ γ2v

2

c4
∂2

∂τ 2
− 2γ2 v

c2
∂

∂X

∂

∂τ
, (42)

∂2

∂y2
=

∂2

∂Y 2
, (43)

∂2

∂z2
=

∂2

∂Z2
(44)

and

1

c2
∂2

∂t2
= γ2 1

c2
∂2

∂τ 2
+ γ2v

2

c2
∂2

∂X2
− 2γ2 v

c2
∂

∂X

∂

∂τ
(45)

We then see that

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2
t = γ2

(
1− v2

c2

)
∂2

∂X2
+

∂2

∂y2
+

∂2

∂z2
− γ2

(
1− v2

c2

)
1

c2
∂2
τ ,

(46)

=
∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2
− 1

c2
∂2
τ . (47)

This means that the wave equations for the electric field and the magnetic induction
are Lorentz invariant, as should be expected:[

∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2
− 1

c2
∂2
τ

]
E(R, τ) = 0 , (48)[

∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2
− 1

c2
∂2
τ

]
B(R, τ) = 0 . (49)

b) Using complex notation, we consider a plane wave

E(x, y, z, t) = E0ŷe
i(kx−ωt) . (50)

Compute the frequency Ω a person in reference F2 will observe in terms of the
frequency ω in reference F1, the velocity v, and the velocity of light c.

Solution

We must transform the expression for the plane wave in the initial coordinates in
reference frame F1 to an expression for the plane wave in reference frame F2. To this
end, we use

kx− ωt = kγ (X + vt)− ωγ
(
τ + vX/c2

)
, (51)

= γ
(
k − ω

v

c2

)
X − γω

(
1− v

c

)
, (52)

= Kx− Ωt , (53)
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where we have used that ω = c and then find that

Ω = ω

√
c− v

c+ v
(54)

and Ω = Kc, which corresponds to the relativistic Doppler shift of the frequency. In
reference frame F2, the plane wave is

E(X, Y, Z, τ) = E0ŷe
i(Kx−Ωτ) . (55)

Problem 3.
We consider two materials, 1 and 2, and the interface between them.

a) Derive the boundary conditions (105) and (106).

Solution

We start from Faraday‘s law and integrate over a small area S with a normal vector
that is parallel to the interface:

∇×E = −∂tB (56)∫
dS ·∇×E = −∂t

∫
dS ·B (57)∮

dlE = −∂t

∫
dS ·B . (58)

The surface area perpendicular to the interface is shown in Fig. 2

On the left-hand side of Eq. (58), we have converted the surface integral to a line inte-
gral around the surface using Stoke‘s theorem. Next, we let the height of the surface
approach zero so that the area of the surface approaches zero on the right-hand side
of (58), and the line integrals on the right-hand side only contain contributions from
lines parallel to the interface. The result is valid for any surface area perpendicular
to the interface and, hence, any parallel line. Hence, we find the boundary condition
(105).

We can carry out a similar argument for the boundary condition for the magnetic
field. We start from Ampere‘s law and integrate over a small area S with a normal
vector that is parallel to the interface:

∇×H = Jf + ∂tD , (59)∫
dS ·∇×H =

∫
dS · Jf + ∂t

∫
dS ·D , (60)∮

dl ·H = If + ∂t

∫
dS ·D , (61)

where If is the free charge current through the surface.
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Figure 2: An interface between two materials. The surface denoted with straight (dashed)
lines above (below) the interface is perpendicular to the interface.

Now, we do as above and let the height of the surface approach zero so that the area
of the surface in the last term on the right-hand side of (61) vanishes. The result is
valid for any surface area perpendicular to the interface and any parallel line. Hence,
we find the boundary condition (106).

b) Derive the boundary conditions (107) and (108).

Solution

We start from Gauss‘ law and integrate over a small volume at the interface as shown
in Fig. 3. We use the divergence theorem (114) to convert the integral on the left-hand
side to a surface integral.

∇D = ρ , (62)∫
d3r∇ ·D = q , (63)∮

dS ·D = q , (64)

where q is the total charge within the volume equal to the total charge at the surface
when the surface height approaches zero. In the limit of zero height, we only have
contributions from the normal vector of the displacement field on the left-hand side
of Eq. (64). Hence, since this result is valid for any surface area, we find Eq. (107).

The proof of the boundary condition for the magnetic induction, Eq. (108) follows
in a similar way from Gauss‘ law for magnetic induction, Eq. (100) with the only
difference that there are no magnetic monopole charges.
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Figure 3: An interface between two materials. The volume is denoted by straight (dashed)
lines above (below), and the interface has the largest areas parallel to it.

Problem 4.

a) We consider a microwave cavity as shown in Fig. 4. The cavity dimensions are a
along the x direction, b along the y direction, and c along the z direction. Metallic
plates enclose the cavity.

In the Lorentz gauge, and in the absence of free charges, the scalar potential V fulfills
the wave equation (

∇2 − 1

c2
∂2
t

)
V (x, y, z) = 0 . (65)

Choose the coordinate system so that one metal plate is located at x = 0 and another
at x = a. Similarly, there are metal plates located at y = 0, y = b, z = 0, and z = c.
What possible modes for the scalar potential V can exist inside the cavity?

Solution

The scalar potential must satisfy the wave equation (65) that in Cartesian coordinates
becomes (

∂2
x + ∂2

y + ∂2
z −

1

c2
∂2
t

)
V (x, y, z, t) = 0 (66)
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a

b

c

Figure 4: A microwave cavity. Metallic plates enclose the volume abc.

We use separation of variables, V (x, y, z) = X(x)Y (y)Z(z)T (t) and find that

d2

dx

2

X(x) = k2
x , (67)

d2

dy

2

Y (y) = k2
y , (68)

d2

dz

2

Z(z) = k2
z , (69)

1

c2
d2

dt

2

T (t) = k2
x + k2

y + k2
z , (70)

where kx, ky, and kz are constants. We define the frequency ω as

ω = c
√

k2
x + k2

y + k2
z . (71)

A general solution is

X(x) = A cos kxx+B sin kxx , (72)

Y (y) = C cos kyy +D sin kyy , (73)

Z(z) = E cos kzz + F sin kzz (74)

T (t) = G cosωt+H sinωt (75)

for any values of the wave vectors kx, ky, and kz.
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The metal plates have the same potential, which we set to zero. That implies the
boundary conditions

X(x = 0) = 0 , (76)

X(x = a) = 0 , (77)

Y (y = 0) = 0 , (78)

Y (y = b) = 0 , (79)

Z(z = 0) = 0 , (80)

Z(z = c) = 0 . (81)

We then find that A = 0, B = 0, and C = 0 and that the wave vectors are quantized
so that

kx =
nxπ

a
(82)

ky =
nyπ

b
(83)

kz =
nzπ

c
, (84)

where nx = 1, 2, . . ., ny = 1, 2, . . ., and nz = 1, 2, . . . are integral quantum numbers.

Without loss of generality, we may set B = 1, D = 1, and F = 1 so that any potential
is a linear combination of the eigenmode solutions

VnX ,ny ,nz(x, y, z, t) = sin
nπ

a
x sin

nπ

b
y sin

nπ

a
z
(
Gnx,ny ,nz cosωnx,ny ,nzt+Hnx,ny ,nz sinωnx,ny ,nzt

)
(85)

where the eigenfrequency is

ωnx,ny ,nz = cπ

√(nx

a

)2
+
(ny

b

)2
+
(nz

c

)2
. (86)

b) We consider a point charge q that is located at position R = (0, a, 0) above a grounded
metal plate at y = 0 as schematically shown in Fig. 5.

Compute the electric field as a function of position for all locations above the plane.

Solution

In the metal, the potential is constant, and we choose it to be zero. We use the method
of image charges to enforce the condition that the potential should be constant in
the plane defined by y = 0. This implies that we introduce a fictitious charge −q
located at position (0,−a, 0). The potential is then

V (x, y, z) =
q

4πϵ0

(
1√

x2 + (y − a)2 + z2
− 1√

x2 + (y + a)2 + z2

)
. (87)
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Metal

x

y

q

a

Figure 5: A point charge at (0, a, 0) is above the metal plane at y = 0. The metal plane is
infinite in the x and z directions. We show here only the projection in the x-y plane.

We compute the static electric field from the relation E = −∇V and find

Ex =
1

4πϵ0

(
x

(x2 + (y − a)2 + z2)3/2
− x

(x2 + (y + a)2 + z2)3/2

)
, (88)

Ey =
1

4πϵ0

(
y − a

(x2 + (y − a)2 + z2)3/2
− y + a

(x2 + (y + a)2 + z2)3/2

)
, (89)

Ez =
1

4πϵ0

(
z

(x2 + (y − a)2 + z2)3/2
− z

(x2 + (y + a)2 + z2)3/2

)
. (90)

c) An electron moves with constant velocity v in a circle of radius R so that its position
at time t is

re(t) = R

(
cos

vt

R
x̂+ sin

vt

R
ŷ

)
, (91)

where x̂ is a unit vector along the x direction and ŷ is a unit vector along the y
direction.

What is the charge density ρ(r, t) and the charge current density J(r, t)? Demon-
strate that there is charge conservation,

∂ρ

∂t
+∇ · J = 0. (92)

Solution
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The charge density is
ρ(r, t) = −eδ(r − re(t)) (93)

and the charge current density is

J = −eve(t)δ(r − re(t)) , (94)

where the velocity is ve(t) = dre(t)/dt.

By computing the time derivative of the charge density, we find

∂ρ

∂t
= eve(t) ·∇δ(r − re(t)) (95)

= −∇J , (96)

which we should demonstrate.

d) In the Lorentz gauge, the time-dependent scalar potential V and vector potential A
in vacuum are

V (r, t) =
1

4πϵ0

∫
d3R

ρ(R, tr)

|R− r|
, (97)

A(r, t) =
µ0

4π

∫
d3R

J(R, tr)

|R− r|
. (98)

Explain what the retarded time tr is and why we must use this time tr in these
equations.

Solution

In a vacuum, electromagnetic waves travel at the speed of light c. The retarded time
tr = t − |R − r|/c is the time the signal started to propagate from position R to
reach position r at time t.
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A Maxwell‘s Equations

Maxwell‘s equation in vacuum for the electric field E, the displacement field D, the mag-
netic induction B, and the magnetic field H are

∇ ·D = ρf , (99)

∇ ·B = 0 , (100)

∇×E = −∂B

∂t
, (101)

∇×H = Jf +
∂D

∂t
, (102)

in terms of the free charge density ρf and the free charge current density Jf .

B Constitute Relations

In linear and isotropic media, we have

D = ϵE , (103)

B = µH , (104)

where ϵ is the dielectric constant and µ is the magnetic permeability.

C Boundary Conditions for Electromagnetic Fields

At interfaces between material 1 and material 2, the boundary conditions are

ên × (E1 −E2) = 0 , (105)

ên × (H1 −H2) = Ks , (106)

ên · (D1 −D2) = σS , (107)

ên · (B1 −B2) = 0 , (108)

where ên is a unit vector normal to the interface, σS is the surface charge density, and Ks

is the surface charge current density.

D Spherical Coordinates

In spherical coordinates r, θ, and ϕ, the gradient is

∇t = r̂
∂t

∂r
+ θ̂

1

r

∂t

∂θ
+ ϕ̂

1

r sin θ

∂t

∂ϕ
. (109)
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The divergence is

∇ · v =
1

r2
∂

∂r

(
r2vr

)
+

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vϕ
∂ϕ

. (110)

The Laplacian is

∇2 =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
. (111)

E Products of matrices

A · (B ×C) = B · (C ×A) = C · (A×B) , (112)

A× (B ×C) = B (A ·C)−C (A ·B) . (113)

F Integral Theorems

The divergence theorem is ∫
d3r∇ ·A =

∮
A · dS . (114)

Stoke‘s theorem (or the curl theorem) is∫
(∇×A) · dS =

∮
A · dl . (115)

G Some Useful Results

We define R = r − r1, R = |R|, and R̂ = R/R. Then

∇ · R̂

R2
= 4πδ(R) , (116)

∇ 1

R
= − R̂

R2
, (117)

∇2 1

R
= −4πδ(R) . (118)


