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Allowed exam material: Alternative C 

 Standard pocket calculator 
 Rottman: Mathematical Formula (all language editions) 
 Barnett og Cronin: Mathematical Formula 
 
 
The exam consists of: 

1. The first page (the present page) which must be delivered with answers to the 
multiple choice questions.  

2. 3 ”normal” Problems 1, 2 and 3 (Appendix A) 
3. One set of multiple choice questions, Problem 4 (Appendix B) 

 
The three ”normal” problems count altogether 50%, and the multiple choice questions 
count altogether 50%.  Only ONE of the alternatives A-D must be marked for each of the 
20 multiple choice questions. Correct answer gives one point, wrong answer gives zero 
points. 
  
Answers to the multiple choice questions in Appendix B: 
 
Question 1 2 3 4 5 6 7 8 9 10 11 12 
Answer             
 
Question 13 14 15 16 17 18 19 20 
Answer         
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Problem 1. Fields, response functions and relaxation processes: 
Consider a physical system that is forced out of equilibrium by applying a time (t) 
dependent external force, σ(t), to it.  For linear response, the response field 
perturbation of the system is: γ(t) = α σ(t), where α is a linear response function 
which is characteristic of the specific system under consideration. Assuming that the 
system returns to equilibrium, γ(t = ∞), at a rate, dγ(t)/dt, which increases 
proportionally with the magnitude of the perturbation, γ(t), we may write: 

dγ(t)/dt = (γ(t = ∞)- γ(t))/τ (1) 
where the system characteristic time, τ, is the constant of proportionality between the 
rate and the perturbation. τ  contains information about the dynamics of physical 
processes in the system that couple to the external field σ. Equation (1) represents a 
simple relaxation process (Debye relaxation). 

 
a) We will discuss responses to general external forces for the three types of 

experiments listed in the following table: 
 

Experiment 
type  

External force σ(t) Comment on the response γ(t) 

1 Step Step function:  
σ(t < t0) = 0 and σ(t ≥ t0) = σ0 

γ(t = ∞) = ασ0 

2 Pulse δ-function:  
σ(t) = σ0δ(t) 

γ(t = ∞) = 0 

3 Dynamic Time dependent:  
σ(t) = σ0 exp(-iωt) 

γ(t ) = γ0 exp(-iωt + iδ(ω)) = α(ω) σ(t) 
ω is the applied frequency 
δ(ω) is the phase difference between 
the force and the response 
σ0  and  γ0 are force and response 
amplitudes respectively 

 
• Using Equation (1), and the comments given in the table, derive and sketch 

in figures, expressions for γ(t) for experiment types 1 and 2.  
• For the case of experiment type 3, derive and sketch the expression for the 

complex frequency dependent response function α(ω) = exp(iδ(ω)) = 
γ(t)/σ(t). 

 
b) Assume that we are studying a dielectric sample applying an external electric field 

E to it. In this case, the force defined in a) is the applied electric field σ = E, and 
the response of the system is the sample polarization, γ = P. The linear response 
function for this case is α = ε0χ where χ = ε -1 is the dielectric susceptibility, ε is 
the dielectric constant and ε0 is the vacuum permittivity. In reality, E and P are 
vectors, but for simplicity we use scalar variables here. The general experiment 
types and general expressions derived in a) can be transferred directly to simple 
Debye relaxation phenomena in dielectrics, like we consider now. 

 
• Discuss the distinction between orientational (or) Por and distortional (d) Pd 

polarizations respectively, in dielectrics.  
• Sketch and discuss in a schematic drawing the real part of ε0χ versus 

frequency for a typical dielectric. 
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In a dielectric, one needs to distinguish between the externally applied field, E, 
and the local field, Eloc, in the sample. It is the local field at the site of a molecule 
that acts to polarize or reorient that molecule. The relation between the 
polarization P and the local field for monomolecular dielectrics is  

P = Por + Pd = ρβEloc 
where ρ is the particle density, and β = βor + βd is the polarisibility.  
 

• Discuss without entering into details, how it can be shown that for 
isotropic liquids and symmetric crystals  

Eloc = E + P/(3ε0) 
Here E is the externally applied electric field, and P/(3ε0) = EL is the so-
called Lorentz-field, which represents the average (mean-field) 
contribution to Eloc acting on one molecule from all the other molecules in 
the sample. 

• Show that for this case: 
(ε-1)/(ε+2) = ρβ/(3ε0) 

  which is the Clausius-Mosotti equation for dielectrics, and also that 
ε0χ = ρβ/(1-ρβ/(3ε0)) 

• Discuss what happens, and what it means in terms of physics, if 
β increases with decreasing T in such a way that the Lorentz-field 
contribution ρβ/(3ε0) = 1 at some temperature T = TC. The simplest T 
dependence one can think of for this case is linear in T, i.e. ρβ/(3ε0) = 1 - 
c(T-TC), where c is a constant. 
 

c) Por is related to the orientation of molecular dipoles in the dielectric. The potential 
energy, u, of a molecule with dipole moment p0 in an electric field Eloc is:  

u = -p0Eloccosθ 
 where θ is the angle between the dipole - direction and the Eloc - direction. 
 Defining the orientational distribution function for dipolar molecules in the 

dielectric as w(φ,θ), and thus obtaining the fraction of molecular dipoles in the 
angular interval dφdθ as w(φ,θ)sin(θ)dφdθ (for 0<θ<π and 0<φ<2π), we get by 
using standard Boltzmann statistics i.e. w(θ,φ) ∝ exp(-u/kBT), where kB is the 
Boltzmann constant and T is the temperature, that: 

Por = ρp0 〈cosθ〉 = (∫dφ∫dθw(φ,θ)sin(θ)cosθ)/(∫dφ∫dθw(φ,θ)sin(θ)) 
  = ρp0

 ∫dθ[2πsin(θ)cos(θ)exp(xcos(θ))]/Z 
 where the variable x = p0Eloc/(kBT), the integrals over θ run from 0 to π, the ones 

over φ from 0 to 2π, and the normalization Z is the partition function: 
Z =∫dφ∫dθw(φ,θ)sin(θ) =  ∫dθ[2πsin(θ)exp(xcos(θ))] = 2π[exp(x)-exp(-x)]/x. 

 
• Show that for temperatures T >> p0Eloc/kB, the orientational part of the 

polarisibility in a dielectric can be written as: 
βor ≈ (p0)2/(3kBT) 

How can this result be used in a practical experiment to measure the 
distortional polarisibility βd? 
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Problem 2. Phase transitions and Landau theory: 
Landau theory is a phenomenological thermodynamic theory describing phase 
transitions. This theory considers a free energy g(η,T) of the system, where T is the 
temperature, and η is an order parameter which is defined to be equal to zero for 
temperatures above the phase transition temperature TC. Landau theory assumes that 
near TC, when η is small, it is possible to expand the free energy in powers of η, thus:  

g(η,T) = g0 - Xη + c2η2 + c3η3 + c4η4 + c5η5 + c6η6 + .......+ cnηn + ......  
Here, X is an external field, which couples bilinearly to the order parameter, η, and  cn 
(n = 2,3,4,.......) are constants. We generally assume based on physical arguments, that 
c2(T) = b(T – TC), where b is a positive constant, and that c3, c4, c5, c6, ……, cn, 
……… are constants independent of T. g0 is the part of the free energy that is not 
related to the phase transition under consideration. 
a)  

• What is the general meaning of, and the general definition of, an order 
parameter in the context of phase transitions?  

• Give examples of specific order parameters (η) and their corresponding 
external fields (X) for some real physical systems: For example for 
ferroelectrics, ferromagnets, ferroelastics, nematics, dipolar nematics, 
superconductors, etc. 

b)  
• Discuss in general what is meant by “first order” and “second order” phase 

transitions. What do "first" and "second" refer to in this case? 
• In terms of the Landau theory, consider the three cases in the following 

table, and for each of the three cases discuss whether the transition is of 
first or of second order kind.  
Case 1: c3 = 0, c4 is positive, and cn = 0 for n > 4 
Case 2: c3 = c5 = 0, c4 is negative, c6 is positive, and cn = 0 for n > 6 
Case 3: c3 is negative, c4 is positive, and cn = 0 for n > 4. 

• Also for each of the three cases, assuming that there is no external field 
applied, i.e. X= 0, sketch and discuss (no calculations) η(T) versus T, and 
also g(η,T) versus η, for various T. Discuss the physical relevance of each 
of the three cases. 

c)  
• For Case 1 in b), derive an expression for the temperature dependence of 

the equilibrium value of the order parameter ηeq(X = 0), and show that for 
this case, the order parameter susceptiblity  

χ(T<TC,X=0) = -1/2 χ(T>TC,X=0) 
where χ = dη/dX is the linear response function for application of external 
field X resulting in response η. 

• Discuss how this χ(T) - behavior obtained from Landau theory is related to 
the Clausius-Mosotti equation derived in Problem 1. 

• For Case 1, show that for the specific heat Cv = -T(dS/dT) = -T(d2g/dT2), 
we can write: Cv(T>TC,X=0) = constant, and that 

Cv(T<TC,X=0) = Cv(T>TC,X=0) + Tb2/(2c4) 
d)  

• For Case 3 in b) (also called the Landau - de Gennes expansion), derive an 
expression for the temperature dependence of the equilibrium value of the 
order parameter ηeq(X = 0). 
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Problem 3. Polymer structure and dynamics: 
a) Diffusive motion of individual particles can formally be described by the time-

dependent auto-correlation function g1(r,t), defined such that the quantity 
g1(r,t)d3r 

 gives the probability that a particle moves during a time t from its starting point 
into a volume element d3r which is r away. g1(r,t) is a probability distribution, 
and as such is normalized, i.e. ∫g1(r,t)d3r = 1. 
We follow Einstein, and choose to break up g1(r, t+∆t) into two steps, and we 
write 

g1(r,t+∆t) = ∫ g1(r-r',t) g1(r',∆t)d3r'   (2) 
where the first step, during time t, achieves a displacement r-r' of the particle, 
while the second step, in the remaining time ∆t, brings the particle to r.  
 

• What is the basic assumption underlying that we write the total probability 
as a product of two individual probabilities representing the two steps? 

 
• Show that Equation (2) can be rewritten (assuming ∆t<<t and |r'|<<|r|) as a 

diffusion equation: 
∂g1(r,t)/∂t = DS∇2g1(r,t)   (3) 

where the self-diffusion coefficient 
DS = (∫g1(r',∆t)|r'|2d3r')/(6∆t) = 〈|r'|2〉/(6∆t) 

represents the mean squared displacement per unit time. 
 

• Show that DS is a constant, and thus, that the mean squared displacement 
〈|r'|2〉 for individual diffusing particles increases linearly with time. 

 
b) Assume that we release a diffusing particle in origo r = 0 at time t = 0, i.e. 

g1(r,t=0) = δ(r). With this starting condition, Equation (3) has the following 
"Green's function" solution:  

g1(r(t),t) = (3/(2π〈|r|2〉))3/2exp(- 3|r(t)|2/(2〈|r|2〉))  (4) 
which then represents a Gaussian probability distribution function for the motion 
of a Brownian particle. 
We define the end-to-end vector of a coiled polymer chain to be R. Assume that 
the chain can be broken up into NS individual uncorrelated segments aj (j = 
1,2,3,.....,NS), i.e. R = ∑j aj. For uncorrelated unrestricted aj vectors, the chain 
geometry is equivalent to stepwise independent Brownian motion of a diffusing 
particle, and we can directly adopt the probability distribution Equation (4) as the 
probability distribution w(R) for the chain end-to-end distance R, i.e.:  

w(R) = (3/(2π R0
2))3/2exp(-3R2/(2R0

2)) 
 where R = |R| and R0

2 = 〈|R|2〉 = ∫w(R)R2d3R = ∫w(R)R24πR2dR. 
 

• Show that R0
2 = NS〈|aj|2〉 ∝ N ∝ M, where N is the degree of 

polymerization, and M is the chain molecular weight. 
• Present an argument showing that a coiled Gaussian chain is an object with 

a fractal dimension Df = 2. 
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c) Using standard Boltzmann statistics, one may derive the Einstein relation for the  
self-diffusion coefficient: 

DS = kBTν = kBT/ζ 
where kB is the Boltzmann constant, T is the temperature, ν is the particle 
mobility, and ζ is the friction coefficient. 
The "tube model" for polymer dynamics introduced by Sam Edwards, takes 
entanglement effects among different chains into account in order to describe the 
chain dynamics in a polymer sample. This is a mean-field type model that focuses 
on individual chains, and that includes interactions with other chains by 
representing them collectively as a tube inside which an individual chain is 
restricted to move, like a reptile (the de Gennes "reptation model"). 

 
• Present an argument showing that the disentanglement time, τd, for 

entangled polymer chains scales as 
τd ∝ M3 
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Problem 4. Multiple choice questions: 
 
1.  The static structure factor S(q) measured in static scattering experiments is a direct 

measure of: 
a) The positions of the atoms in the unit cell? 
b) The Fourier transform of the order parameter? 
c) The Fourier transform of space correlations between different particles? 
d) None of the above? 

 
2. X-rays scatter from: 

a) The electrons in the sample? 
b) The neutrons in the sample? 
c) The protons in the sample? 
d) The photons in the sample? 

 
3.  Which of the following is NOT true regarding the cause of finite width of 

experimentally measured Bragg scattering peaks from a periodic structure: 
a)  A finite width may result from finite sample size, i.e. finite number of 

scattering planes? 
b)   A finite width may result from phonons? 
c)   A finite width may result from finite instrument resolution? 
d)   A finite width may not result from impurities or lattice defects? 

 
4.  Which of the following type of radiation has the largest penetration depth into black 

materials: 
a) X-rays? 
b) Electrons? 
c) Neutrons? 
d) Visible light? 

 
5.  Scanners used in Atomic Force Microscopes (AFM) are usually made from: 

a)   Ferromagnets? 
b)   Piezoelectrics? 
c)   Superconductors? 
e)   Liquid crystals? 
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6.  The order parameter for nematic order of dipoles is (< > denotes an average using the 
appropriate orientational distribution function, and θ = 0 is the director orientation): 

a) <(3cos2θ-1)/2>? 
b) <(3sin2θ-1)/2>? 
c) <sinθ>? 
d) None of the above? 

 
7. In general, the imaginary part of a frequency dependent linear susceptibility describes: 

a)  The heat loss from the sample before any force is applied? 
b)  The loss of potential energy from the sample when the force is applied and 

released? 
c)  The power taken up by the sample from the applied force, and in general 

distributed as heat loss? 
d)  None of the above? 

 
8.  Diamagnetism: 

a) Diamagnetism is the term used for magnetism in materials with induced 
electric dipoles? 

b) The atomic diamagnetic susceptibility depends on the number of electrons in 
the atom? 

c) Diamagnetism is present in only a few materials? 
d) None of the above? 

 
9.   Paramagnetism: 

a) Paramagnetism is present in all materials, except in diamagnetic materials? 
b) The paramagnetic susceptibility for a sample with localized magnetic 

moments is inversely proportional to the temperature squared? 
c) The paramagnetic susceptibility is in general negative? 
d) None of the above? 

 
10. The Kramers-Kronig (K-K) formulas give relations between the real and imaginary 

parts of generalized linear response functions, i.e. between the storage and the loss 
moduli respectively. The physics behind the K-K relations is: 

a)  That the system obeys simple Debye relaxation behavior. 
b)  The causality principle, i.e. no response until after the applied force? 
c)  The superposition principle, i.e the system behavior may be described as a      

linear combination of fundamental modes? 
d)  There is no physics behind the K-K relations, they are purely mathematical? 
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11. In zero applied magnetic field, the size and shape distributions of Weiss domains in a 
ferromagnet are in general given as a result of: 

a)  A competition between the diamagnetic energy and the paramagnetic energy? 
b)  A competition between the stray field energy and the earth magnetic field 

energy? 
c)  A competition between the stray field energy and the domain wall energy? 
d)  None of the above? 

 
12. Ferromagnetism is basically a result of: 

a)  Classical interaction between magnetic dipoles? 
b)  Quantum mechanical exchange forces between spins of neighboring atoms? 
c)  Quantum mechanical exchange of phonons resulting in paired electrons? 
d)   None of the above? 

 
13. For second order phase transition, near the critical temperature TC, critical 

fluctuations may become important for the observed behavior. Which of the 
following statements is true?  

a)  Critical fluctuations are included in the classical Landau theory? 
b)  Critical fluctuations are caused by infinitely small restoring forces giving 

emergent dynamic and spontaneous regions of finite order parameter near TC?  
c)  Critical fluctuations are considered to be objects with a size proportional to the 

lattice spacing of the material? 
d)   None of the above? 

 
14. The critical field Hc in a typical type-I superconductor is: 

a) Proportional to (TC – T)? 
b) Proportional to (TC – T)2? 
c) Proportional to (TC – T)1/2? 
d) None of the above? 

 
15. The superconducting Cooper pairs: 

a)  Are bosons? 
b)  Are formed by pairs of electrons bound together by exchanging photons? 
c)  Are localized electron-pairs where the electrons in a pair typically are less than 

one lattice spacing apart? 
d)  None of the above? 
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16. The coherence length in a superconductor is defined as: 
a) The decay length for superconducting currents of Cooper pairs into the 

superconductor? 
b)  The length over which Cooper pairs are correlated? 
c)  The decay length for the density of Cooper pairs? 
d)  The decay length of an applied magnetic field into a type-I superconductor? 

 
17. The lower critical field Hc1 in a type-II superconductor describes: 

a)  The field for which there is complete penetration of the externally applied field 
in all the sample? 

b)  The field for which the first single flux-line is created? 
c)  The field for which the number of flux-lines equals the number of Cooper-

pairs? 
d)  None of the above? 

 
18. The rubber polymer elastic force is referred to as an entropic force. By this we mean 

that: 
a)  When a polymer chain is stretched isothermally, the entropy does not change? 
b)  When a polymer chain is stretched isothermally, only the internal energy 

changes? 
c)  When a polymer chain is stretched isothermally, the entropy changes and the 

internal energy does not change? 
d)  None of the above? 

 
19. In a Dynamic Light Scattering (DLS) experiment, the dynamic structure factor S(q,t) 

is measured, where q is the scattering vector. Typical scattering curves from samples 
made from a dilute suspensions of Brownian diffusing colloidal spheres follow a 
simple relaxational behavior of the kind S(q,t) = exp(-t/τ(|q|)), where the relaxation 
time τ(|q|) = C |q|2. The proportionality constant C is  

a) C = DS, the self diffusion constant? 
b) C = 1/DS, the inverse of the self diffusion constant? 
c) C = ν, the mobility? 
d) C = 1/η, the inverse of the viscosity of the suspending liquid? 

 
20. The positions in frequency of the Brillouin doublet peaks measured in Rayleigh - 

Brillouin experiments provide information about: 
a) Lifetimes of sound waves? 
b) Propagation velocities sound waves? 
c) Lifetimes of heat waves? 
d) Propagation velocities of heat waves? 

 

 
 


