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Problem 1 - Multiple choice
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Problem 2 - Short answer questions

16) Differences between first and second order PTs:

In first order PTs :
(
∂G0
∂T

)
T=TC

6=
(
∂G1
∂T

)
T=TC

=⇒ latent heat release, while for second order PTs
(
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∂T

)
T=TC

=(
∂G1
∂T

)
T=TC

;
(
∂2G0
∂T 2

)
T=TC

6=
(
∂2G1
∂T 2

)
T=TC

, so no latent heat released, but the system is discontinuous in terms

of specific heat capacity (rate of change of entropy), during the PT.

In first order PTs the difference in the first order differential of the free energy allows for nucleation to occur
at undercoolings below TC . In second order transitions, conventional nucleation cannot occur - rather the
system forms the ordered phase through anomalous fluctuations in the order parameter over a temperature
range in the vicinity of TC .

In second order transitions, the mean field magnitute of the order parameter is 0 at TC , while in first order
transitions the order parameter may spontaneously take on a non-zero value, so that at the transition tem-
perature the ordered and disordered phase co-exist with both 0 and non-zero mean field values of the order
param.

17) An exciton is a quasi-particle formed by a bound electron-hole pair, caused by the absorption of a pho-
ton. Excitons form in semi-conductors and insulators, and may move in the lattice as a bound charge-pair.

18) At room temperature, the magnetisation of a paramagnetic substance should be weak, so g(JLS)Jµ0µBH �
kBT , and Curies law applies. Expansion of coth(x) in small arguements, give coth(x) ' 1

x + x
3 −O

3. Hence,
for small arguments the Brillouin function is approximated by

BJ(x) ' 2J + 1

2J

(
2J

(2J + 1)x
+

(2J + 1)x

6J

)
− 1

2J

(
2J

x
+

x

6J

)

=
1

x
+

(2J + 1)2x

12J2
− 1

x
− x

12J2
=

4J(J + 1)x

12J2
=

(J + 1)x

3J

Substituting x = g(JLS)Jµ0µBH
kBT

gives

χ(T ) =
∂M

∂H
=

∂

∂H

(
ng(JLS)JµB(J + 1)g(JLS)JµBµ0

3JkBT
H

)

=
nµ0µ

2
Bg

2(JLS)J(J + 1)

3kBT
=
µ0µBg(JLS)(J + 1)Ms

3kBT

=⇒MS =
3kBTχ(T )

µ0µBg(JLS)(J + 1)

Half-filled 4f shell gives S= 7/2, L=0, J=S, g(JLS) = 3
2 + S(S+1)−L(L+1)

2J(J+1) = 3
2 + S(S+1)

2S(S+1) = 2. Thus,

MS =
3 · 1.38065 · 10−23 · 293 · 2.78 · 10−3

4π10−7 · 9.274 · 10−24 · 2 · 9/2
' 3.21 · 105 A/m
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19) Use the Clasius-Mossotti relation from the formula sheet, and assume CaF2 to be non-magnetic, i.e.
n2 = c2/v2 = εε0µ0

ε0µ0
= ε =⇒

ε− 1

ε+ 2
=
n2 − 1

n2 + 2
=

∑
njαj
3ε0

=
N(αCa2+ + 2αF−)

3ε0a3
= C,

with C as a constant, and N = 4 is the number of molecular units of CaF2 in the unit cell. Entering numbers,
we find

C =
4 · (5.22 · 10−41 + 2 · 1.16 · 10−40)

3 · (5.46 · 10−10)38.8542 · 10−12
' 0.263

Solving for n, we find

n2 − 1 = Cn2 + 2C =⇒ n =

√
2C + 1

1− C
' 1.44

20) The gradient term is obviously non-zero only in regions where the order parameter is varying spatially,
whereas in the standard Laue-model for a single domain region, the mean field value of the order param is
constant. A spatially varying order parameter would account for the order param state in domain walls,
where e.g. the polarisation would have to revert from one direction to the other. Thus, employing the GL
approach (with the appropriate term for the field energy density included) it is possible to add domain walls
to the thermodynamic model, and account statistically for domain structures as well. With a time-depedent
variant for the GL it is also possible to handle domain nucleation, competition between domains and domain
growth.

Problem 3

a) From eqn (1), the effective microscopic field may be expressed

~Heff = ~Hext −
1

gµBµ0

∑
j 6=i

Γ(∆~rij)~Sj .

In a mean field approach to the overall magnetisation, all spins ~S are assumed equivalent, and replaced by
their thermal average value < ~S >T . Thus, for the mean field approximation to the effective field, with
nearest neighbour direct exchange only, we find:

~Heff = ~Hext −
1

gµBµ0

∑
j 6=i

Γ(∆ < ~rij >T ) < ~Sj >T= ~Hext −
2 < Γ >T N < ~S >T

gµBµ0
.

The meanfield magnetisation is given by

~M =
1

V

∑
j

< µj >T=
−gµB
V

∑
j

< ~Sj >T= −ngµB < ~S >T .

Substituting ~M into the expression for the effective field yields

~Heff = ~Hext + λ ~M with λ =
2 < Γ >T
nµ0µ2Bg

2

Accordingly, thermal averaging on the microscopic model yields a result consistent with the Weiss model.

b) In the paramagnetic phase, T > TC , but close to the transition temperature, we assume weak magneti-
sation in the presence of a non-zero Hext, such that Curies law does apply. We use the small argument
approximation for the Brillouin function from question 18) to find

2



M =
np2µ2Bµ0

3kBT
(Hext + λM) =

C

T
(Hext + λM)

=⇒M(T − Cλ) = CHext =⇒ χ =
∂M

∂Hext
=

C

T − TC
,

with

TC = Cλ =
ng2S(S + 1)µ2Bµ0

3kB

2 < Γ >T'TC
nµ0µ2Bg

2
=

2S(S + 1) < Γ >TC
3kB

c)

M = ngµBSBS

(
gSµ0µBH

kBT

)
Enter microscopic and mean field versions of Heff with Hext = 0.

Mean field:

M = ngµBSBS

(
gSµ0µBλM

kBT

)
= ngµBSBS

(
2 < Γ >T S

nµBgkBT
M

)
Microscopic:

M = ngµBSBS

(∑
i ~µi

~Heff

kBT

)
= ngµBSBS

(
− < Γ >T

∑
i
~Si(~Si−1 + ~Si+1)

kBT

)

Difference: Microscopic version retains the full energy accountancy of spin-wave, i.e. including the full
distribution of spins, whereas the mean field version only holds for the net behaviour. In the microscopic
version it is therefore possible to handle changes/fluctuations of the spin wave, such as e.g. inversion of
the spin-orientation through domain walls, the role of defects/imperfections, etc. Nevertheless, for the net
behaviour in single domains the mean field version gives a pretty good description.

Problem 4

a) By expressing the continuity relation in terms of Fourier components, we find

−iωρind + i~k~jind =⇒ ρind =
~k~jind
ω

=
σ

ω
~k ~E

while Gauss law gives:

ı~k ~E =
ρtot
ε0

=⇒ ρtot = iε0~k ~E

Substituting for the charge densities in the expression for the dielectric response function, we arrive at

ε(~k, ω) = 1− ρind(~k, ω)

ρtot(~k, ω)
= 1− σ(~k, ω)~k ~E

iωε0~k ~E
= 1 +

iσ(~k, ω)

ωε0

b) In the long-wavelenght limit, the response function from a) becomes

ε(ω) = 1 +
iσ(ω)

ωε0
= 1 +

iσ0
ε0ω(1− iωτ)

= 1 +
σ0(i− ωτ)

ε0ω(1 + ω2τ2)
= 1− σ0τ

ε0(1 + ω2τ2)
+ i

σ0
ε0ω(1 + ω2τ2)

(1)

For the plasma system, we set up an equation of motion, with losses added

m
d2~x

dt2
= −m

τ

d~x

dt
− e ~E − e~vx × µ ~H =⇒ −ω2m+ iωm/τ)~x = −e ~E − e~vx ~H
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Thus, collectively the plasma motion becomes

~P = −ne~x = − ne2τ

mω(ωτ − i)

[
~E + µ

h̄k

m
x̂× ~H

]
' ne2τ

mω(ωτ − i)
~E,

where we have used the long wavelength limit ~k → 0 when ignoring a net magnetic contribution. From the
electromagnetic identities on the formula sheet, we find

ε(ω) = 1+
P

ε0E
= 1− ne2τ

mε0ω(ωτ − i)
= 1− ne2τ(ωτ + i)

mε0ω(ω2τ2 + 1)
= 1− ne2τ2

mε0(ω2τ2 + 1)
−i ne2τ

mε0ω(ω2τ2 + 1)
(2)

In the plasma frequency regieme, (typically from UV and above), ωτ � 1. We may therefore approximate
the denominators of eqn (1) and (2) by (ω2τ2 + 1) ≈ ω2τ2

The results are:

ε(ω) = 1− σ0
ε0ω2τ

+ i
σ0

ε0ω3τ2
(1b)

ε(ω) = 1− ne2

mε0ω2
− i ne2

mε0ω3τ
= 1−

ω2
p

ω2
− i

ω2
p

ω2

1

ωτ
(2b)

In the last eqn, we have introduced the plasma frequency. Equating the expressions for the response
functions, we find from the real parts:

ωp =

√
σ0
ε0τ
' 3.3 · 1016s−1
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