Candidate number	
Course code	
Page no	

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK

EXAM IN TFY4260 - CELL BIOLOGY AND CELLULAR BIOPHYSICS

Contact during the exam: Rita de Sousa Dias

Tel 47155399

Date: 6 June 2018 Time: 09.00-13.00

All questions in Exercises 1 to 3 have the same weight (5 pts). Questions in Exercise 4 count with 1 pt each (20 in total). None of the questions require lengthy answers so answer as precisely and concisely as possible.

Good luck!

Exercise 1: Membranes and transport across membranes

In the capillaries of body tissue, O_2 is released by hemoglobin within the erythrocytes (red blood cells) and leaves the cell. CO_2 enters the cell and is converted to bicarbonate (H_2CO_3). Bicarbonate ions (HCO_3) are then transported out of the cell.

- a) By which processes are CO₂ transported in and HCO₃⁻ transported out?
- b) Why is HCO₃⁻ transported out of the cell?
- c) How will an erythrocyte respond when placed in a hypotonic solution?
- d) Below is a schematic representation of the erythrocyte lipid membrane and some associated proteins. Discuss two (general) functions of spectrin in this cell.

Candidate number
Course code
Page no

Exercise 2: Cell signaling, regulation of gene expression and cancer cells

- a) Ras is a monomeric G protein that plays an important role as a second messenger in cell signaling initiated by receptor tyrosine kinases (RTK). Explain the role of such G proteins in cell signaling events.
- b) Besides the activation of Ras, RTKs can also activate phospholipase C_{γ} . Make a scheme of the signaling pathway, which also involves IP₃ (inositol-1,4,5 triphosphate) and DAG (diacylglycerol) as second messengers. Each of these can lead to the activation of other second messengers. One of these processes is a key event in many signaling events. Which? Include it in your scheme.
- c) Even when the transcription of a gene is said to be "off", there is usually a low, basal level of transcription. Why is this important in relation to the synthesis of galactoside permease (carrier protein) in the lactose catabolism?
- d) DNA methylation is said to be a mechanism that reinforces the cell memory regarding gene expression patterns. Explain why.
- e) To which of the hallmarks of cancer is the lower expression of cadherins by the cancer cell related to? Justify.
- f) A major goal in cancer therapy is to identify anticancer drugs that can be used to inhibit products of specific cancer-critical genes. Should such inhibitors target the products of oncogenes or the products of tumor suppressor genes? Justify.
- g) Briefly explain primary and secondary cell culturing.

Exercise 3: Immunology, the endomembrane system, and cellular motility

- a) Macrophage motility is essential for normal development and immune function. Briefly describe the steps of cell crawling, pointing out the main players in the process.
- b) While most cells have the ability to present antigens at their cell membrane, macrophages and dendritic cells are called **professional** antigene presenting cells. Why?
- c) In the process of presenting an antigen from an intracellular pathogen to the surface, the antigen is transported from the cytosol to the lumen of the endoplasmic reticulum. Why?
- d) How are the major histocompatibility complex protein and antigen transported to the surface of the cell?
- e) Extracellular pathogens are ingested and degraded in the lysosomes of antigen presenting cells. How are lysosomes formed?

Exercise 4: Mark the correct alternative with a cross. Deliver these pages together with the answers of the other exercises. Do not forget to write down the candidate number.

- a) Bacteria cultures that are grown at low temperature are likely to produce membrane lipids with
 - a larger number of carbon atoms in the hydrocarbon chain.
 - a larger number of double bonds.
 - longer heagroups.
- b) Membrane receptors involved in signal transduction belong to the class of
 - integral membrane proteins.
 - peripheral membrane proteins.
 - lipid-anchored membrane proteins.

Candidate number
Course code
Page no

- c) Active transport of substances against their electrochemical gradient can be driven by
 - ATPases.
 - carrier proteins.
 - both ATPases and carrier proteins.
- d) Most proteins found in mitochondria
 - are synthesized in the cytosol and post-translationally imported.
 - are synthesized in the ER and transported in coated vesicles.
 - possess a KREL tag.
- e) The intermembrane space of mitochondria is characterized by the
 - large concentration of protons.
 - large concentration of ATP synthases.
 - large concentration of proteases.
- f) The function of the smooth ER includes the synthesis of
 - neurotransmitters.
 - cholesterol.
 - messenger RNA.
- g) Peroxisomes are characterized by possessing
 - a low pH value.
 - a large concentration of urate oxidase.
 - a large concentration of proteases.
- h) Innactivation of the Na⁺ channels is important in the context of nerve transmission because
 - it prevents subthreshold depolarization to initiate an action potential.
 - it allows the opening of K⁺ channels and membrane repolarization.
 - it keeps the Na⁺ channels closed long enough to assure the directionality of the action potential.
- i) The plasma membrane of neurons is
 - equally permeable to all ions.
 - more permeable to potassium ions.
 - more permeable to sodium ions.
- j) The nodes of Ranvier are rich in
 - myelin sheath.
 - voltage-gated ion channels.
 - neurotransmitters.
- k) Flagella motility is driven by
 - Microtubules and dyneins.
 - Microfilaments and myosin.
 - Intermediate filaments and vimetin.
- 1) Proteins enter the nucleus

Candidate number	
Course code	
Page no	

- via the nuclear pores.
- if they possess a nuclear export signal.
- via the nuclear lamina.

m) The nucleolus

- is surrounded by a thin nucleolar membrane.
- is the site for synthesizes of ribosomal proteins.
- concentrates the rRNA genes.
- n) Contact between the microtubules and chromosomal kinetochores occurs
 - when the nuclear envelope disintegrates.
 - in the anaphase.
 - when the DNA is replicated.
- o) Cytokinesis begins
 - in the metaphase.
 - in the anaphase.
 - after the telophase.
- p) Apoptosis is activated by
 - the binding of a growth factor to the respective receptor.
 - damages to the DNA.
 - the binding of antibodies to antigen
- q) Tight junctions
 - connect the cytoplasm of two neighbouring cells.
 - seals the connection between two neighboring cells in the epithelium cell layer.
 - anchors the cells to basal lamina.
- r) Resistance against compression forces in tissues is due to:
 - collagen.
 - elastin.
 - proteoglycans.
- s) In some cancer cells it is observed an abnormal amplification of genes encoding proteins involved in cell signalling. Which level of gene regulation does it refer to?
 - Genetic control.
 - Transcriptional control.
 - Translational control.
- t) When a gene is under negative regulation, the effectors (ligands)
 - act as inducers.
 - act as repressors.
 - can act both as inducers and repressors.