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Problem 1
We will in this problem consider magnetotransport in the Lorentz model. The Lorentz model
consists of a particle colliding elastically with static scatterers. We assume the particle to
carry an electrical charge (−e) and a mass m. There is a constant and spatially homogeneous
magnetic field ~B = B~ez in the z-direction. Hence, between collisions, the charged particle is
subjected to the Lorentz force and follows the equation of motion

m~̇v = −e~v × ~B , (1)

where ~̇v is the time derivative of the velocity ~v.
We will in the following assume that the system is two dimensional. That is, the charged
particle is moving in the (x, y) plane which is perpendicular to the magnetic field. The
scatterers are also two dimensional so that the charged particle never leaves this plane, even
after being scattered.

a) If the charged particle does not collide with any scatterer, it will move in a circle in the
(x, y) plane. Show that if the charged particle’s speed is v = |~v|, then the radius of the
circle is

R =
mv

eB
, (2)

and the angular frequency, ω = 2π/T where T is the time it takes to complete the circle,
is

ω =
eB

m
. (3)

b) We assume that the scatterers are disks with radii equal to a. The differential scattering
cross section for such disks is

dσ(ψ)

dψ
=
a

2
sin

∣∣∣∣ψ2
∣∣∣∣ , (4)
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where ψ is the scattering angle with respect to the velocity vector of charged particle
just before the collision. Show that the total cross section is

σ = 2a . (5)

We define a dimensionless differential cross section as

g(ψ) =
1

σ

dσ(ψ)

dψ
=

1

4
sin

∣∣∣∣ψ2
∣∣∣∣ . (6)

c) We assume a uniform density of scatterers (i.e. number of scatterers per area) equal to
n. Show that the mean free path of the charged particle (distance between scattering
events) is

Λ =
1

nσ
. (7)

Furthermore, show that the mean time between collisions is

τ =
1

nvσ
. (8)

d) We will in the following work in the Grad limit (named after H. Grad) where n → ∞
and a → 0 in such a way that Λ remains constant. Suppose the charged particle is
released at a position ~r0 at time t = 0 with a velocity ~v. Show that the probability that
the particle will not suffer any collisions with the scatterers is

P0 = e−2πR/Λ = e−T/τ . (9)

Hint: Start by showing that the probability that the particle does not suffer a collision
over an infinitesimal distance dl is (1− dl/Λ).

If the charged particle does not hit a scatterer after having completed a full circle, it
will never collide with the scatterers. Rather, it will for ever be repeating the same
circle.

e) We now construct the Boltzmann equation for this problem: the two-dimensional
Lorentz model in a perpendicular magnetic field and in the Grad limit. The proba-
bility density to find the charged particle with a velocity direction characterized by an
angle φ and at time t is f(φ, t). The left hand side of the Boltzmann equation contaning
the flow terms may then be written[

∂

∂t
+ ω

∂

∂φ

]
f(φ, t) . (10)

Argue why this is so.

f) The Boltzmann collision operator stating how f(φ, t) changes per time due to collisions
with new scatterers is given by

B0 [f(φ, t)] =
1

τ

∫ +π

−π
dψ g(ψ) [f(φ− ψ, t)− f(φ, t)] . (11)

Explain the terms in this expression.
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g) Suppose now that the charged particle has just hit a scatterer, thereby changing its
velocity vector from direction φ−ψ to ψ. There is then a probability P0 — see equation
(9) — that the charged particle will return after a time T = 2π/ω to collide once more
with the same scatterer. The new direction of the charged particle after the second
collision with the same scatterer will be φ+ψ. Show this. (Hint: Work with a scatterer
that has a finite radius a� R. A simple geometrical argument will do.)

h) We are now in the position to construct the Boltzmann equation for this problem.
Suppose the charged particle collides k times with the same scatterer before hitting a
new one. The rate at which this happens is given by

Bk [f(φ, t)] =
1

τ
P k0

∫ +π

−π
dψ g(ψ) [f(φ− (k + 1)ψ, t− kT )− f(φ− kψ, t− kT )] . (12)

Explain the reasoning behind this term.

i) The full — and exact — Boltzmann equation for this problem is then[
∂

∂t
+ ω

∂

∂φ

]
f(φ, t) =

[t/T ]∑
k=0

Bk [f(φ, t)] , (13)

where [t/T ] is the integer part of the ratio t/T (as in 5 is the integer part of 5.2). This
equation breaks two assumptions usually seen as essential for constructing Boltzmann
equations that can be solved. Which two assumptions are they?

j) Equation (13) can be solved analytically. We will not do this here since the ensuing
expressions are longish. However, we will solve it in the limit of weak magnetic field.
Show that the assumption T � τ corresponds to this limit.

k) In this weak-field limit, the Boltzmann equation (13) may be approximated by[
∂

∂t
+ ω

∂

∂φ

]
f(φ, t) = B0 [f(φ, t)] , (14)

by neglecting terms proportional with P0 in the exact Boltzmann equation.

By defining the Fourier transform of f(φ, t) as

fm(t) =

∫ +π

−π
dφ eimφ f(φ, t) , (15)

and the Fourier-Laplace transform as

Fm(s) =

∫ ∞
0

ds e−st fm(t) , (16)

show that the solution of equation (14) is

Fm(s) =
τ(1− 4m2)fm(0)

τ(1− 4m2)(s− imω)− 4m2
. (17)

Hint:

gm =

∫ +π

−π
dψ eimψ g(ψ) =

1

1− 4m2
(18)

is the Fourier transform of the dimensionless differential scattering cross section (6).
The parameter m takes on integer values only.
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l) We now use the Einstein-Green-Kubo formula to determine the diffusion constant D in
our system. The Einstein-Green-Kubo formula in two dimensions is

D =
1

2

∫ ∞
0

dt 〈~v(t) · ~v(0)〉 . (19)

We orient the cartesian coordinate system (x, y) so that the charged particle initially
has the velocity pointing along the x-direction corresponding to φ(t = 0) = 0. Hence,
vx(0) = v cos(0) = v and vy(0) = v sin(0) = 0. At later times vx(t) = v cos(φ(t)).
Hence, the diffusion constant is

D =
v2

2

∫ ∞
0

dt 〈cos(φ(t))〉 . (20)

Show that

D =
v2

2
Re [F1(0)] . (21)

by first showing that

Fm(s) =

∫ ∞
0

dt e−st 〈eimφ(t)〉 . (22)

In equation (21) Re means real part. Finally, show that

D =
3v2τ

8 + 18π2(τ/T )2
. (23)

It should be noted that this expression is not a series expansion in the small parameter
τ/T ∝ B. Rather, the only approximation consists in neglecting recollisions with the
same scatterer.


