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Problem 1. (Points: 10+10+10+10+10+10= 60)

The Boltzmann-equation for the one-particle distribution function f(r,v, t) is given by

∂f

∂t
+ v · ∂f

∂r
+ a · ∂f

∂v
=

∫
d3v1

∫
dΩ σ(Ω) |v1 − v| [f ′f ′1 − ff1]

The collision term on the right hand side of the equation describes a collision (v,v1) → (v′,v′1),
with f = f(r,v, t), f1 = f(r,v1, t), and correspondingly for (f ′, f ′1). Finally, σ(Ω) is the differential
scattering cross section for the collision.

a) Define the functional

H(t) ≡
∫
d3r

∫
d3vf lnf

Assume now that a = −∂U(r)/∂r, where U is some external potential, and show that

dH

dt
≤ 0

Give the physical interpretation of this result.

b) A velocity-average of a quantity A(v) may be obtained from f as

〈A〉 ≡ 1

n

∫
d3vAf

where n =
∫
d3vf , where n is a number density. Show that we have the following macroscopic

equation for any A(v)

∂ (n〈A〉)
∂t

+
∂ (n〈Avj〉)

∂xj
− aj

∂ (n〈A〉)
∂vj

=

∫
d3v

∫
d3v1

∫
dΩ σ(Ω) |v1 − v| [f ′f ′1 − ff1]A(v)

c) Define what is meant by a collision invariant, and show that the right hand side of the above
equation vanishes whenever A is a collision invariant.

d) Now let A = p, where p is the momentum of the particle described by f . Let ρ = nm be
the mass-density of the system. Set up the macroscopic equation for p and give the physical inter-
pretation of it.
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e) The hydrodynamic conservation laws for mass and momentum are given by, on their most general
form

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρuu) = F−∇ · P

where P is the pressure-tensor of the system, F is an external force acting on a little fluid element of
density ρ, and u = 〈v〉. Express P in terms of an appropriate velocity-average, as defined above, by
comparing the above equations with the result you found in d).

f) Consider the system close to equilibrium, so that we may use the following Ansatz for f

f(r,v, t) = n

(
m

2πkBT

)3/2

exp

(
− m

2kBT
(v − u)2

)
where kB is Boltzmann’s constant and T is temperature, and (n, T,u) could depend on (r, t). Calcu-
late P for this case, and from this find expressions for the hydrostatic pressure p, the shear viscosity
η, and bulk-viscosity ζ of the system.
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Problem 2. (Points: 10+10+10+10=40)

The Master equation for a discrete, continuous time, stochastic process is given by

Ṗn(t) =
∑
n′

[ωn,n′Pn′ − ωn′,nPn] ≡WPn

Here, Pn(t) is the probability distribution of the stochastic process, and ωn,n′ is a transition rate from
state n′ to state n. The matrix W has eigenfunctions Φλ(n) and eigenvalues λ given by

WΦλ(n) = −λΦλ(n)

We define an inner product as follows:

(Φ,Ψ) ≡
∑
n

Φ(n)Ψ(n)

P 0
n

Here, P 0
n is the equilibrium solution to the Master equation, which we consider to be known.

a) Assume detailed balance to hold, and use this to show that (Φ,WΨ) = (Ψ,WΦ) and that λ ≥ 0.
Write down a general solution to the Master equation using the eigenvalues and eigenfunctions of
W. In particular, exhibit the solution at t→∞.

b) A continuous time asymmetric random walk is defined by the transition rate ωn,n′

ωn,n′ = α δn+1,n′ + β δn−1,n′ ; (α, β) ≥ 0

Give a physical interpretation of the constants α and β and set up the Master equation for this
problem. Give the balance condition and the detailed balance condition for stationary states.

c) Introduce the generating functional F (z, t) for Pn(t), defined by

F (z, t) ≡
∑
n

znPn(t)

Find the differential equation for F (z, t) with initial condition obtained from Pn(0) = δn,0, solve this
equation and find Pn(t).

d) Define the drift-velocity vdrift and diffusion constant D for this system, by

〈n〉 = vdriftt

〈(n− 〈n〉)2〉 = Dt

Here, an average is defined by

〈f(n)〉(t) ≡
∑
n

f(n)Pn(t)

Calculate vdrift and D.
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Formulae that may be useful:

ex =
∞∑
k=0

1

k!
xk

(a+ b)N =
N∑
n=0

(
N

k

)
aN−n bn

∫ ∞
0

dx x2n e−αx
2

=

(
− d

dα

)n √
π

α

Constitutive relation for the hydrodynamic pressure tensor to linear order in gradients:

Pij = p δij − 2η

(
∂ui
∂xj

+
∂uj
∂xi

)
− ζδij∇ · u

The Wiener-Khinchin theorem for the power spectrum of a stochastic process Y (t):

G(ω) =
2

π

∫ ∞
0

dτ cos(ωτ) κ(τ)

where κ(τ) = 〈Y (t+ τ)Y (t)〉. The Langevin-equation is given by

v̇ + γv = A(t)

with 〈A(t)〉 = 0, 〈A(t+ τ)A(t)〉 = Γδ(τ).

The probability-distribution of a one-component stochastic process V (t) governed by the Langevin-
equation is given by, with V (0) = V0

P (V, t) =

√
γ

πΓ(1− e−2γt)
exp

(
−γ(V − V0e−γt)

Γ(1− e−2γt)

)


