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This solution consists of 7 pages.

Problem 1.

a) The diffusion equation in d-dimensions (for constant D) reads

∂p(x, t|x0, t0)

∂t
= D∇2p(x, t|x0, t0). (16)

Here p(x, t|x0, t0) denotes the probability density function for the particle being at
position x at time t, given that it started at x0 at time t0. The symbol D signifies the
diffusion constant, and ∇ denotes the d-dimensional nabla-operator so that

∇2 =
∂2

∂x21
+

∂2

∂x22
+ . . .+

∂2

∂x2d
. (17)

To show that Eq. (2) [on the problem set sheet] is a solution to Eq. (16) can be done in
several ways. The first method we will mention, that is also the simplest, is to recognize
that the diffusion in the various directions x̂i are all independent. Hence, the probability
p(x, t|x0, t0) can be written as a product of the probabilities, p∗(xi, t|x0,i, t0), for each
direction, and thereby obtaining Eq. (3) from the problem set. The other, and more
direct (and mathematical method) is to substitute Eq. (2) and (3) into the diffusion
equation that you found. By noticing that

∂2

∂x2i
p(x, t|x0, t0) =

∂2

∂x2i
p∗(xi, t|x0,i, t0)

d∏
j 6=i

p∗(xj , t|x0,j , t0), (18a)

so that

∇2p(x, t|x0, t0) =

d∑
i=1

∂2

∂x2i
p∗(xi, t|x0,i, t0)

d∏
j 6=i

p∗(xj , t|x0,j , t0), (18b)

and

∂

∂t
p(x, t|x0, t0) =

d∑
i=1

∂

∂t
p∗(xi, t|x0,i, t0)

d∏
j 6=i

p∗(xj , t|x0,j , t0), (18c)
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it follows by substituting these expressions into the diffusion Eq. (16) that

d∑
i=1

[
∂

∂t
p∗(xi, t|x0,i, t0)−D

∂2

∂x2i
p∗(xi, t|x0,i, t0)

] d∏
j 6=i

p∗(xj , t|x0,j , t0) = 0. (19)

Here (and below) the notation
∏d
j 6=i indicates a product-operator over the index j

from 1 to d, but excluding j = i. The expression in the square brackets of Eq. (19)
is identical zero for all i’s since p∗(xi, t|x0,i, t0) is the solution pf the one dimensional
diffusion equation. Therefore, also the left-hand-side of Eq. (19) is zero showing that
the expression in Eq. (2) is a solution to the diffusion equation.

Writing out the full solution for the d-dimensional diffusion equation gives [with Eq. (3)]

p(x, t|x0, t0) =
1

[4πD(t− t0)]
d
2

exp

{
− (x− x0)

2

4D(t− t0)

}
. (20)

b) A straight forward calculation based on the definition of the average, using Eq. (20),
t0 = 0 and x0 = x(t0) = 0 gives

∆(t) =
〈

[x(t)− x(0)]2
〉

=

∫
ddx x2p(x, t|0, 0)

=

∫
ddx

[
d∑
i=1

x2i

]
d∏
j=1

p∗(xj , t|0, 0)

=
d∑
i=1

∫ dxi x
2
i p∗(xi, t|0, 0)

d∏
j 6=i

∫
dxj p∗(xj , t|0, 0)

 .
(21)

Each of the integrals over xj evaluates to one, since p∗(xj , t|0, 0) is normalized. The
integral over xi is (shown by using formulas from the integration table or using partial
integration twice) ∫

dxi x
2
i p∗(xi, t|0, 0) = 2Dt, (22)

so that the expression in the square brackets simply is 2Dt independent of the value of
the index i.

Hence, after performing the sum we arrive at

∆(t) = 2dDt, (23)

where the factor d comes from the summation. This was the expression that should be
derived. It should be noted that if t0 6= 0 then a one would get ∆(t) = 2dD(t− t0) that
scales like ∆(t) ' 2dDt in the long time limit. However, with t0 = 0, this relation is
satisfied for all times.
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c) From the the definition

∆(t) =
〈

[x(t)− x(0)]2
〉
, (24)

we obtain by direct differentiation since ensemble averaging and time-differentiation are
commuting operations

d∆(t)

dt
=

〈
dx(t)

dt
· 2 [x(t)− x(0)]

〉
= 2

〈
v(t) ·

∫ t

o
dt′

dx(t′)

dt′

〉
= 2

∫ t

0
dt′
〈
v(t) · v(t′)

〉
,

(25)

which was what should be shown. In the last transition we have used the fundamental
theorem of differentiation.

d) At equilibrium, the velocity, v(t), of the Brownian particle constitutes a stationary
stochastic process. Then the two-point correlation function 〈v(t) · v(t′)〉, can only de-
pend on the time difference between t and t′, and not explicitly on t and t′.

Since at equilibrium v(t) is a stationary stochastic process, it follows that〈
v(t) · v(t′)

〉
=
〈
v(t− t′) · v(0)

〉
. (26)

Thus, from the expression for d∆(t)/dt derived in the previous sub-problem, Eq. (27),
one gets

d∆(t)

dt
= 2

∫ t

0
dt′
〈
v(t− t′) · v(0)

〉
= 2

∫ 0

t
(−dt′′)

〈
v(t′′) · v(0)

〉
= 2

∫ t

0
dt′′
〈
v(t′′) · v(0)

〉
,

(27)

where we in the 2nd transition have introduced the new variable t′′ = t− t′.

e) We have already shown that for long times ∆(t) = 2dDt, so it readily follows that

d∆(t)

dt
= 2dD. (28)

Combining this result with the expression found in Eq. (27) for d∆(t)/dt, one gets

2dD ' 2

∫ t

0
dt′′
〈
v(t′′) · v(0)

〉
. (29)

Rearranging this expression, and taking the limit t→∞, gives

D =
1

d

∫ ∞
0

dt′′
〈
v(t′′) · v(0)

〉
. (30)
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Now, denoting the integration variable t (instead of t′′) one gets the Einstein-Green-
Kubo relation that we intended to derive

D =
1

d

∫ ∞
0

dt 〈v(t) · v(0)〉 . (31)

Problem 2.

a) Let x(t) be the position vector of the Brownian particle of mass m in d-dimensional
space. The friction that the particle feels from the surrounding liquid is characterized
by the friction coefficient γ. The random impact due to the bath we denote by R(t), and
the standard assumption (that we will follow as well) is that this force is uncorrelated.
With these quantities, the Langevin equation for the particle that follows from Newtons
2nd law reads

mẍ(t) =− γmẋ(t) + R(t). (32)

We have assumed when writing this equation that there is no external potential. Using
that the velocity of the particle is defined as

v(t) = ẋ(t), (33)

it follows that

v̇(t) =− γv(t) + ξ(t), (34)

where we have introduced a “mass normalized” stochastic force

ξ(t) =
R(t)

m
. (35)

b) The solution of the stochastic differential equation (34) follows by direct integration:

v(t) = v0e
−γt +

∫ t

0
dt′e−γ(t−t

′)ξ(t′); v0 = v(0). (36)

To see this, let us multiply the stochastic ordinary differential equation by the integrat-
ing factor exp (γt), so that Eq. (34 can be written in the form

d

dt

[
eγtv(t)

]
= eγtξ(t). (37)

By integrating this equation over time from 0 (there the initial condition is specified)
to some time t, one gets∫ t

0
dt′

d

dt′

[
eγt

′
v(t′)

]
= eγtv(t)− v(0) =

∫ t

0
dt′eγt

′
ξ(t′),

or after some minor manipulations (v0 = v(0))

v(t) = v0e
−γt +

∫ t

0
dt′e−γ(t−t

′)ξ(t′). (38)
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Here the first term on the right-hand-side is the homogeneous solution while the second
is the particular solution.

Alternatively, and instead of deriving this solution, you can also show that Eq. (11)
is a solution to the stochastic ordinary differential equation (9) by substituting it into
the differential equation.this solution into the into For the derivative of the velocity one
obtains

v̇(t) = −γv0e
−γt − γ

∫ t

0
dt′e−γ(t−t

′)ξ(t′) + ξ(t), (39)

where we have used the fundamental theorem of calculus. From Eq. (39) it readily
follows that indeed velocity as given by Eq. (36) satisfies the stochastic ODE for v(t).

Note that if you have trouble to arrive at expression (39), it might be illuminating to
realize that the particular solution can be rewritten as∫ t

0
dt′e−γ(t−t

′)ξ(t′) = e−γt
∫ t

0
dt′eγt

′
ξ(t′), (40)

where the derivative with respect to time of the right-hand-side of this equation can be
performed by the product rule.

c) The velocity-velocity correlation function of the particle is defined by 〈v(t) · v(t′)〉. Us-
ing the solution (36) one gets

〈
v(t) · v(t′)

〉
=

〈[
v0e
−γt +

∫ t

0
dτe−γ(t−τ)ξ(τ)

]
·

[
v0e
−γt′ +

∫ t′

0
dτ ′e−γ(t

′−τ ′)ξ(τ ′)

]〉

= v20e−γ(t+t
′) +

〈∫ t

0
dτ

∫ t′

0
dτ ′ e−γ(t−τ)e−γ(t

′−τ ′)ξ(τ) · ξ(τ ′)

〉

= v20e−γ(t+t
′) +

∫ t

0
dτ

∫ t′

0
dτ ′ e−γ(t−τ)e−γ(t

′−τ ′) 〈ξ(τ) · ξ(τ ′)
〉︸ ︷︷ ︸

=Cδ(τ−τ ′)

= v20e−γ(t+t
′) + C

∫ t

0
dτ

∫ t′

0
dτ ′ e−γ(t−τ)e−γ(t

′−τ ′)δ(τ − τ ′)

(41)

where we have neglected terms linear in 〈ξ〉 since such terms are zero, used that integra-
tion and ensemble averages commute, and the properties of the correlation 〈ξ(τ) · ξ(τ ′)〉.
In proceeding, one has to take care since one does not know a priory if t ≤ t′ or t′ ≤ t.
Let us first assume that t ≤ t′. Then we first perform the integral over τ ′ to make sure
that the delta-function will give a contribution when τ = τ ′. One gets〈

v(t) · v(t′)
〉

= v20e−γ(t+t
′) + C

∫ t

0
dτ e−γ(t+t

′−2τ)

= v20e−γ(t+t
′) + Ce−γ(t+t

′)

∫ t

0
dτ e2γτ

= v20e−γ(t+t
′) +

C

2γ
e−γ(−t+t

′) − C

2γ
e−γ(t+t

′), t ≤ t′.

(42)
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Instead if t′ ≤ t, we perform the τ integral first. The calculation is completely similar
to the one presented above, and the result reads〈

v(t) · v(t′)
〉

= v20e−γ(t+t
′) +

C

2γ
e−γ(t−t

′) − C

2γ
e−γ(t+t

′), t′ ≤ t. (43)

Hence, we observe that independent of t ≤ t′ or t′ ≤ t we may write write〈
v(t) · v(t′)

〉
= v20e−γ(t+t

′) +
C

2γ
e−γ|t−t

′| − C

2γ
e−γ(t+t

′), (44)

which is the final result for the velocity-velocity correlation function.

d) For long times, t+ t′ � 1/γ, the first and last term of the correlation function (44) can
be neglected and one obtains the stationary or equilibrium correlation function given
by 〈

v(t) · v(t′)
〉
eq =

C

2γ
e−γ|t−t

′|, (45)

that only depending on the time difference |t− t′| as it should.

e) From Eq. (45) it follows that at equilibrium the velocity-velocity correlations are expo-
nential. Then according to Doobs theorem the process, since it is non-trivial, should be
an Ornstein-Uhlenbeck process.

To determine the constant C we start by taking the equal time (t = t′) equilibrium
correlation

〈v(t) · v(t)〉eq =
〈
v2
〉
eq =

C

2γ
. (46)

According to the equipartition theorem one has at equilibrium at absolute temperature
T that

1

2
m
〈
v2
〉
eq = d

1

2
kBT, (47)

where kB is Boltzmann’s constant.

Combining these two result gives

C = d
2γkBT

m
. (48)

The final expression for the equilibrium velocity-velocity correlation function therefore
becomes: 〈

v(t) · v(t′)
〉
eq = d

kBT

m
e−γ|t−t

′|, (49)

f) Since we have available the equilibrium velocity-velocity correlation function (49) we
can directly calculate the diffusion constant from the Einstein-Green-Kubo relation.
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One gets

D =
1

d

∫ ∞
0

dt 〈v(t) · v(0)〉eq

=
kBT

m

∫ ∞
0

dte−γt

=
kBT

mγ
.

(50)

This is the famous Einstein relation that we derived by another method in the lectures.
Notice that this relation is independent of the dimension of space.


