Norwegian University of Science and Technology Department of Physics

Contacts during the exam: Pawel Sikorski, phone: 98486426

EXAM TFY4280 Signal Processing

Mon 06th of June 2011. 09:00

Examination support materials:

- Simple calculator (according to NTNU exam regulations)
- K. Rottmann: Matematisk formelsamling (eller tilsvarende)
- Carl Angell og Bjørn Ebbe Lian: Fysiske størrelser og enheter, navn og symboler (eller tilsvarende)

Answer must be written in English or Norwegian. Number of points given to each sub-question is given in bold font. The maximum score for the exam is 100p. The exam consists of 7 questions: 4 questions 10 point each (section A) and 3 questions 20p each (section B). Attachment: 2 pages with transform tables and properties.

A

maximum 10 points for each of the question.

- A1 (10p) Plot auto-correlation and self-convolution for each of the two signals shown in Figure [1.](#page-1-0) Both signals are defined for t in the range $[-\pi, \pi]$ and zero outside that range.
- **A2** (10p) Calculate response (output) for a unit step function input $(x(t) = \varepsilon(t))$ and delta impulse input $x(t) = \delta(t)$ from a given impulse response function in the time domain:

$$
h(t) = 2\varepsilon(t) - 0.5e^{-3t}\varepsilon(t)
$$

- **A3** (10p) Two uncorrelated processes $x(t)$ and $y(t)$ have the ensemble averages 2 and 0, respectively. Moreover, $E\{x^2(t)\}=5$ and $E\{y^2(t)\}=2$. Define the random process $z(t)=x(t)+y(t)$. Determine: $\mu_z(t)$, $E\{z^2(t)\}\$ and $\sigma_z^2(t)$
- **A4 (10p)** The signal $x(t)$ passes through a square law device giving output $y(t) = [x(t)]^2$

$$
x(t) = \cos(10t) + \cos(11t)
$$

Determine the Fourier transform of the output $\mathcal{F}\lbrace y(t)\rbrace$.

Figur 1: Question A1

B

maximum 20 points for each of the question.

B1 (20p)

1. Show that

$$
\mathcal{L}\left\{t \cdot x(t)\right\} = -\frac{\mathrm{d}X(s)}{\mathrm{d}s}
$$

2. Use above property to calculate output of LTI system where input $x(t) = te^{-9t}$ defined for $t > 0$ and the impulse response is given by:

$$
H(s) = \frac{1}{(s+10)}
$$

B2 (20p) A Hypothetical measured signal can be represented by an analytical formula:

$$
x(t) = \left[1 - e^{-t} + \sin(10t)\right] \varepsilon(t)
$$

Design and draw circuit diagram for a 1-st order low pass Butterworth filter which will remove 90.9090% of the power carried by the sin part of the signal. For 1-st order low pass Butterworth filter:

$$
|H(\omega)| = \frac{1}{\sqrt{1 + \frac{\omega^2}{\omega_c^2}}} \qquad \qquad \omega_c = \frac{1}{RC}
$$

use $R = 1000\Omega$. Calculate how this filter will effect on the non-sine exponential part of the signal, that is, calculate the output, if the input signal is given by

$$
x_0(t) = \left[1 - e^{-t}\right] \varepsilon(t)
$$

B3 (20p) The figure below (Figure [2\)](#page-2-0) shows a digital filter in which the delays are 0.5 ms.

Write down the difference equation and from this derive Z-transform of the transfer function. Analyse the system and calculate the three first output terms $(0 \le n < 3)$ for the unit step excitation.

Figur 2: Question B3

Appendix B.1 Bilateral Laplace Transform Pairs

Appendix B.3 Fourier Transform Pairs

x(t)	$X(j\omega) = \mathcal{F}{x(t)}$		
$\delta(t)$	1		
$\mathbf{1}$	$2\pi\delta(\omega)$		
$\dot{\delta}(t)$	$j\omega$		
$rac{1}{T}$ $\perp \perp \left(\frac{t}{T}\right)$	$\pm\pm\left(\frac{\omega T}{2\pi}\right)$		
$\varepsilon(t)$	$\pi\delta(\omega)+\frac{1}{i\omega}$		
rect(at)	$\frac{1}{ a }\text{si}\left(\frac{\omega}{2a}\right)$		
$\sin(at)$	$\frac{\pi}{ a }$ rect $\left(\frac{\omega}{2a}\right)$		
$\frac{1}{t}$	$-j\pi sign(\omega)$		
sign(t)	$rac{2}{j\omega}$		
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$		
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$		
$\sin(\omega_0 t)$	$i\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$		
$e^{-\alpha t }, \ \alpha > 0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$		
$e^{-a^2t^2}$	$\frac{\sqrt{\pi}}{2}e^{-\frac{\omega^2}{4a^2}}$		

x(t)	$X(s) = \mathcal{L}{x(t)}$	ROC
Linearity $Ax_1(t) + Bx_2(t)$	$AX_1(s) + BX_2(s)$	$_{\rm ROC}$ $\mathrm{ROC}\{X_1\}$ \cap ROC{ X_2 }
Delay $x(t-\tau)$	$e^{-s\mathcal{I}}X(s)$	not affected
Modulation $e^{at}x(t)$	$X(s-a)$	$\text{Re}\{a\}$ shifted by $\text{Re}\{a\}$ to the right
'Multiplication by t ', Differentiation in the frequency domain tx(t)	$-\frac{d}{d}X(s)$	not affected
Differentiation in the time domain $rac{d}{dt}x(t)$	sX(s)	$_{\rm ROC}$ ⊇ $ROC{X}$
Integration $\int x(\tau)d\tau$	$\frac{1}{s}X(s)$	$\mathrm{ROC} \supseteq \mathrm{ROC}\{X\}$ $\bigcap \{s : \text{Re}\{s\} > 0\}$
Scaling x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC scaled by a factor of \boldsymbol{a}

Appendix B.4 Properties of the Fourier Trans- ${\bf form}$

Appendix B.6 Properties of the z -Transform

Property	x[k]	X(z)	ROC
Linearity	$ax_1[k]+bx_2[k]$	$aX_1(z) + bX_2(z)$	ROC \supset $\mathrm{ROC}\{X_1\} \cap \mathrm{ROC}\{X_2\}$
Delay	$x[k-\kappa]$	$z^{-\kappa}X(z)$	$\mathrm{ROC}\{x\};$ separate consideration of $z = 0$ and $z \rightarrow \infty$
Modulation	$a^kx[k]$	$X\left(\frac{z}{a}\right)$	$\text{ROC}=\left\{z\left \frac{z}{a}\in\text{ROC}\{x\}\right\}\right\}$
Multiplication by k	kx[k]	$-z\frac{dX(z)}{dz}$	$\mathrm{ROC}\{x\};$ separate consideration of $z=0$
Time inversion	$x[-k]$	$X(z^{-1})$	$\text{ROC}=\{z \mid z^{-1} \in \text{ROC}\{x\}\}\$
Convolution	$x_1[k] * x_2[k]$	$X_1(z) \cdot X_2(z)$	$ROC \supseteq$ $\mathrm{ROC}\{x_1\} \cap \mathrm{ROC}\{x_2\}$
Multiplication	$x_1[k]\cdot x_2[k]$	$\frac{1}{2\pi i}\oint X_1(\zeta)X_2\left(\frac{z}{\zeta}\right)\frac{1}{\zeta}d\zeta$	multiply the limits of the ROC

Appendix B.5 Two-sided z -Transform Pairs

