NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY Department of Physics

Contacts during the exam: Pawel Sikorski, phone: 98486426

EXAM TFY4280 Signal Processing

Mon 06th of June 2011. 09:00

Examination support materials:

- Simple calculator (according to NTNU exam regulations)
- K. Rottmann: Matematisk formelsamling (eller tilsvarende)
- Carl Angell og Bjørn Ebbe Lian: Fysiske størrelser og enheter, navn og symboler (eller tilsvarende)

Answer must be written in English or Norwegian. Number of points given to each sub-question is given in bold font. The maximum score for the exam is **100p**. The exam consists of 7 questions: 4 questions 10 point each (section A) and 3 questions 20p each (section B). Attachment: 2 pages with transform tables and properties.

A

maximum 10 points for each of the question.

- A1 (10p) Plot auto-correlation and self-convolution for each of the two signals shown in Figure 1. Both signals are defined for t in the range $[-\pi, \pi]$ and zero outside that range.
- A2 (10p) Calculate response (output) for a unit step function input $(x(t) = \varepsilon(t))$ and delta impulse input $x(t) = \delta(t)$ from a given impulse response function in the time domain:

$$h(t) = 2\varepsilon(t) - 0.5e^{-3t}\varepsilon(t)$$

- A3 (10p) Two uncorrelated processes x(t) and y(t) have the ensemble averages 2 and 0, respectively. Moreover, $E\{x^2(t)\} = 5$ and $E\{y^2(t)\} = 2$. Define the random process z(t) = x(t) + y(t). Determine: $\mu_z(t)$, $E\{z^2(t)\}$ and $\sigma_z^2(t)$
- A4 (10p) The signal x(t) passes through a square law device giving output $y(t) = [x(t)]^2$

$$x(t) = \cos(10t) + \cos(11t)$$

Determine the Fourier transform of the output $\mathcal{F} \{y(t)\}$.

Figur 1: Question A1

В

maximum 20 points for each of the question.

B1 (20p)

1. Show that

$$\mathcal{L}\left\{t \cdot x(t)\right\} = -\frac{\mathrm{d}X(s)}{\mathrm{d}s}$$

2. Use above property to calculate output of LTI system where input $x(t) = te^{-9t}$ defined for t > 0 and the impulse response is given by:

$$H(s) = \frac{1}{(s+10)}$$

B2 (20p) A Hypothetical measured signal can be represented by an analytical formula:

$$x(t) = \left[1 - e^{-t} + \sin(10t)\right]\varepsilon(t)$$

Design and draw circuit diagram for a 1-st order low pass Butterworth filter which will remove 90.9090% of the power carried by the sin part of the signal. For 1-st order low pass Butterworth filter:

$$|H(\omega)| = \frac{1}{\sqrt{1 + \frac{\omega^2}{\omega_c^2}}} \qquad \qquad \omega_c = \frac{1}{RC}$$

use $R = 1000\Omega$. Calculate how this filter will effect on the non-sine exponential part of the signal, that is, calculate the output, if the input signal is given by

$$x_0(t) = \left[1 - e^{-t}\right]\varepsilon(t)$$

B3 (20p) The figure below (Figure 2) shows a digital filter in which the delays are 0.5 ms.

Write down the difference equation and from this derive Z-transform of the transfer function. Analyse the system and calculate the three first output terms $(0 \le n < 3)$ for the unit step excitation.

Figur 2: Question B3

x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
$\delta(t)$	1	$s \in \mathbf{C}$
arepsilon(t)	$\frac{1}{s}$	$\operatorname{Re}\{s\} > 0$
$e^{-at}\varepsilon(t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$-e^{-at}\varepsilon(-t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\} < \operatorname{Re}\{-a\}$
$t \varepsilon(t)$	$\frac{1}{s^2}$	$\operatorname{Re}\{s\} > 0$
$t^n \varepsilon(t)$	$\frac{n!}{s^{n+1}}$	$\operatorname{Re}\{s\} > 0$
$te^{-at}\varepsilon(t)$	$\frac{1}{(s+a)^2}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$t^n e^{-at} \varepsilon(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$\cos(\omega_0 t) \varepsilon(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$e^{-at}\cos(\omega_0 t)\varepsilon(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$e^{-at}\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$t\cos(\omega_0 t)\varepsilon(t)$	$\frac{s^2 - \omega_0^2}{(s^2 + \omega_0^2)^2}$	$\operatorname{Re}\{s\} > 0$
$t\sin(\omega_0 t)arepsilon(t)$	$\frac{2\omega_0 s}{(s^2 + \omega_0^2)^2}$	$\operatorname{Re}\{s\} > 0$

Appendix B.1 Bilateral Laplace Transform Pairs

Appendix B.3 Fourier Transform Pairs

x(t)	$X(j\omega) = \mathcal{F}\{x(t)\}$	
$\delta(t)$	1	
1	$2\pi\delta(\omega)$	
$\dot{\delta}(t)$	$j\omega$	
$\frac{1}{T} \bot \amalg \left(\frac{t}{T} \right)$	$\bot \bot \bot \left(\frac{\omega T}{2\pi}\right)$	
arepsilon(t)	$\pi\delta(\omega) + rac{1}{j\omega}$	
$\operatorname{rect}(at)$	$rac{1}{ a } \mathrm{si}\left(rac{\omega}{2a} ight)$	
$\operatorname{si}(at)$	$rac{\pi}{ a } \mathrm{rect}\left(rac{\omega}{2a} ight)$	
$\frac{1}{t}$	$-j\pi { m sign}(\omega)$	
$\operatorname{sign}(t)$	$\frac{2}{j\omega}$	
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$	
$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
$e^{-\alpha t }, \ \alpha > 0$	$\frac{2\alpha}{\alpha^2+\omega^2}$	
$e^{-a^2t^2}$	$\frac{\sqrt{\pi}}{a}e^{-\frac{\omega^2}{4a^2}}$	

Appendix B.2 Properties of the Bilateral Laplace Transform

x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
Linearity $Ax_1(t) + Bx_2(t)$	$AX_1(s) + BX_2(s)$	$ \begin{array}{c} \operatorname{ROC} & \supseteq \\ \operatorname{ROC}\{X_1\} \\ \cap \operatorname{ROC}\{X_2\} \end{array} $
$\begin{array}{l} \text{Delay} \\ x(t-\tau) \end{array}$	$e^{-s\tau}X(s)$	not affected
$Modulation \ ^{ ho}e^{at}x(t)$	X(s-a)	$Re{a}$ shifted by $Re{a}$ to the right
'Multiplication by t ', Differentiation in the frequency domain tx(t)	$-rac{d}{ds}X(s)$	not affected
Differentiation in the time domain $\frac{d}{dt}x(t)$	sX(s)	$\operatorname{ROC}_{\operatorname{ROC}\{X\}}$
Integration $\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{s}X(s)$	$ \begin{array}{l} \operatorname{ROC} \supseteq \operatorname{ROC}\{X\} \\ \cap \{s : \operatorname{Re}\{s\} > 0\} \end{array} $
$\begin{array}{c} \text{Scaling} \\ x(at) \end{array}$	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC scaled by a factor of a

Appendix B.4 Properties of the Fourier Transform

	x(t)	$X(j\omega) = \mathcal{F}\{x(t)\}$
Linearity	$Ax_1(t) + Bx_2(t)$	$AX_1(j\omega) + BX_2(j\omega)$
Delay	x(t- au)	$e^{-j\omega\tau}X(j\omega)$
Modulation	$e^{j\omega_0 t}x(t)$	$X(j(\omega-\omega_0))$
'Multiplication by t ' Differentiation in the frequency domain	tx(t)	$-\frac{dX(j\omega)}{d(j\omega)}$
Differentiation in the time domain	$\frac{dx(t)}{dt}$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^t x(\tau) d\tau$	$X(j\omega) \left[\pi \delta(\omega) + \frac{1}{j\omega} \right]$ = $\frac{1}{j\omega} X(j\omega) + \pi X(0)\delta(\omega)$
Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right), a\in \mathrm{I\!R}\backslash\{0\}$
Convolution	$x_1(t) * x_2(t)$	$X_1(j\omega) \cdot X_2(j\omega)$
Multiplication	$x_1(t) \cdot x_2(t)$	$\frac{1}{2\pi}X_1(j\omega) * X_2(j\omega)$
Duality	$egin{array}{c} x_1(t) \ x_2(jt) \end{array}$	$x_2(j\omega) \ 2\pi x_1(-\omega)$
Symmetry relations	$egin{array}{c} x(-t)\ x^*(t)\ x^*(-t) \end{array}$	$X(-j\omega)\ X^*(-j\omega)\ X^*(j\omega)$
Parseval theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} X(j\omega) ^2d\omega$

Appendix B.6 Properties of the *z*-Transform

Property	x[k]	X(z)	ROC
Linearity	$ax_1[k]+bx_2[k]$	$aX_1(z) + bX_2(z)$	$\begin{array}{l} \operatorname{ROC} \supseteq \\ \operatorname{ROC}\{X_1\} \cap \operatorname{ROC}\{X_2\} \end{array}$
Delay	$x[k-\kappa]$	$z^{-\kappa}X(z)$	ROC{ x }; separate consideration of $z = 0$ and $z \to \infty$
Modulation	$a^k x[k]$	$X\left(\frac{z}{a}\right)$	$\operatorname{ROC} = \left\{ z \left \frac{z}{a} \in \operatorname{ROC}\{x\} \right\} \right\}$
Multiplication by k	kx[k]	$-z \frac{dX(z)}{dz}$	$\operatorname{ROC}{x};$ separate consideration of z = 0
Time inversion	x[-k]	$X(z^{-1})$	$\operatorname{ROC}=\{z \mid z^{-1} \in \operatorname{ROC}\{x\}\}$
Convolution	$x_1[k] * x_2[k]$	$X_1(z) \cdot X_2(z)$	$ \begin{array}{l} \operatorname{ROC} \supseteq \\ \operatorname{ROC}\{x_1\} \cap \operatorname{ROC}\{x_2\} \end{array} $
Multiplication	$x_1[k] \cdot x_2[k]$	$\frac{1}{2\pi j} \oint X_1(\zeta) X_2\left(\frac{z}{\zeta}\right) \frac{1}{\zeta} d\zeta$	multiply the limits of the ROC

Appendix B.5 Two-sided z-Transform Pairs

x[k]	$X(z) = \mathcal{Z}\{x[k]\}$	ROC
$\delta[k]$	1	$z\in \mathbf{C}$
arepsilon[k]	$\frac{z}{z-1}$	z > 1
$a^k \varepsilon[k]$	$\frac{z}{z-a}$	z > a
$-a^k \varepsilon [-k-1]$	$\frac{z}{z-a}$	z < a
karepsilon[k]	$\frac{z}{(z-1)^2}$	z >1
$ka^k \varepsilon[k]$	$\frac{az}{(z-a)^2}$	z > a
$\sin(\Omega_0 k) \varepsilon[k]$	$\frac{z\sin\Omega_0}{z^2 - 2z\cos\Omega_0 + 1}$	z > 1
$\cos(\Omega_0 k) \varepsilon[k]$	$\frac{z(z-\cos\Omega_0)}{z^2-2z\cos\Omega_0+1}$	z > 1