

Examination paper for TFY4280 Signal Processing

Academic contact during examination: Pawel Sikorski

Phone: 98486426

Examination date: 27.05.2016

Examination time (from-to): 0900 - 1300

Permitted examination support material:

- Simple calculator (according to NTNU exam regulations)
- K. Rottmann: Matematisk formelsamling
- Barnett and Cronin: Mathematical formulae
- Carl Angell og Bjørn Ebbe Lian: Fysiske størrelser og enheter, navn og symboler

Other information about the examp paper:

- Language: English
- Number of pages (including this page and attachments): 5
- Answer must be written in English or Norwegian. Number of points given to each sub-question is given in bold font. The maximum score for the exam is **100p**.
- Attachment: 2 pages with transform tables and properties.

Checked by:

Date: Signature:

Q1. (30p) System $S_1\{ \}$ is described by a transfer function $H_1(s)$ given below.

$$H_1(s) = \frac{1}{s^2 + 3s + 2}$$

- A. Calculate unit step response for this system
- **B.** Design a discrete-time system which is equivalent to the system $S_1\{ \}$ studied above. Find discrete time transfer function H(z) and again calculate output if a discrete time unit step function u[n] is given as an input. If necessary use $t_s = 1$ s and calculate only the few first terms of the output signal $(0 \le n < 3)$.

Hint: to save time, use a difference equation for the system and calculate the unit step response in the time domain.

Q2. (10p) Consider a discrete-time LTI system with a impulse response h[n] given by:

$$h[n] = (-\alpha)^n u[n]$$

where u[n] is the unit step function.

A. Is this system causal?

- **B.** For what range of α -values is this system BIBO stable?
- Q3. (10p) Find the discrete-time Fourier transform (DTFT) of the rectangular pulse sequence given by

$$x[n] = u[n] - u[n - N]$$

where u[n] is the unit step function. This discrete-time signal is sampled with a sampling frequency ω_s , write the expression for the transform both in the discrete frequency domain and in the frequency domain.

Note: it is enough to write the aswer as a fraction of two complex functions and you do not need to arrive at an elegant expression.

Q4. (10p) Find the inverse z-transform of

$$X(z) = z^{2} \left(1 - \frac{1}{2} z^{-1} \right) \left(1 - z^{-1} \right) \left(1 + 2z^{-1} \right) \quad 0 < |z| < \infty$$

$$x[n] = a^{-n}u[-n]$$

Q6. (20p) If the Fourier transform of a signal x(t) is given by $X(\omega)$, find an expression for the Fourier transform $X_s(\omega)$ of signal $x_s(t)$ defined as:

$$x_s(t) = \delta_T(t)x(t)$$

where

$$\delta_T(t) = \sum_{k=-\infty}^{\infty} \delta(t - kt_s)$$

Explain how obtained expression relates to Nyquist sampling rate condition.

HINT: expression for the Fourier transform of a periodic function might be useful here:

$$F_p(\omega) = \sum_{n=-\infty}^{\infty} \omega_0 F(n\omega_0) \delta(\omega - n\omega_0)$$

Q7. (10p) What is defined by a power density spectrum of a random signal and how can it be calculated? Sketch power density spectrum of *white* noise and band-limited white noise signals.

x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
$\delta(t)$	1	$s \in \mathbf{C}$
$\varepsilon(t)$	$\frac{1}{s}$	$\operatorname{Re}\{s\} > 0$
$e^{-at}\varepsilon(t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$-e^{-at}\varepsilon(-t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\} < \operatorname{Re}\{-a\}$
$t\varepsilon(t)$	$\frac{1}{s^2}$	$\operatorname{Re}\{s\} > 0$
$t^n \varepsilon(t)$	$\frac{n!}{s^{n+1}}$	$\operatorname{Re}\{s\} > 0$
$te^{-at}\varepsilon(t)$	$\frac{1}{(s+a)^2}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$t^n e^{-at} \varepsilon(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$\cos(\omega_0 t)\varepsilon(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$e^{-at}\cos(\omega_0 t)\varepsilon(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$e^{-at}\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$t\cos(\omega_0 t)\varepsilon(t)$	$\frac{s^2 - \omega_0^2}{(s^2 + \omega_0^2)^2}$	$\operatorname{Re}\{s\} > 0$
$t\sin(\omega_0 t)\varepsilon(t)$	$\frac{2\omega_0 s}{(s^2 + \omega_0^2)^2}$	$\operatorname{Re}\{s\} > 0$

Appendix B.1 Bilateral Laplace Transform Pairs

Appendix B.2	Properties of the Bilateral Laplace
	Transform

x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
Linearity $Ax_1(t) + Bx_2(t)$	$AX_1(s) + BX_2(s)$	$ \begin{array}{c} \operatorname{ROC} & \supseteq \\ \operatorname{ROC}\{X_1\} \\ \cap \operatorname{ROC}\{X_2\} \end{array} $
Delay $x(t-\tau)$	$e^{-s\overline{\tau}}X(s)$	not affected
$ Modulation \\ e^{at}x(t) $	X(s-a)	$Re\{a\}$ shifted by $Re\{a\}$ to the right
'Multiplication by t ', Differentiation in the frequency domain tx(t)	$-rac{d}{ds}X(s)$	not affected
Differentiation in the time domain $\frac{d}{dt}x(t)$	sX(s)	$\operatorname{ROC}_{\operatorname{ROC}\{X\}}$
Integration $\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{s}X(s)$	$ \begin{array}{l} \operatorname{ROC} \supseteq \operatorname{ROC}\{X\} \\ \cap \{s : \operatorname{Re}\{s\} > 0\} \end{array} $
$\begin{array}{c} \text{Scaling} \\ x(at) \end{array}$	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC scaled by a factor of a

Appendix B.3 Fourier Transform Pairs

	x(t)	$X(j\omega)=\mathcal{F}\{x(t)\}$
	$\delta(t)$	1
. 1 - D	1	$2\pi\delta(\omega)$
	$\dot{\delta}(t)$	$j\omega$
	$\frac{1}{T} \perp \perp \perp \left(\frac{t}{T}\right)$	$\bot \bot \bot \left(\frac{\omega T}{2\pi}\right)$
	arepsilon(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
-	rect(at)	$\frac{1}{ a }$ si $\left(\frac{\omega}{2a}\right)$
	si(at)	$\frac{\pi}{ a } \operatorname{rect}\left(\frac{\omega}{2a}\right)$
	$\frac{1}{t}$	$-j\pi \mathrm{sign}(\omega)$
	$\operatorname{sign}(t)$	$\frac{2}{j\omega}$
	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
	$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
	$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
	$e^{-\alpha t }, \ \alpha > 0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$
	$e^{-a^2t^2}$	$\frac{\sqrt{\pi}}{a}e^{-\frac{\omega^2}{4a^2}}$

Appendix B.4 Properties of the Fourier Transform

	x(t)	$X(j\omega)=\mathcal{F}\{x(t)\}$
Linearity	$Ax_1(t) + Bx_2(t)$	$AX_1(j\omega) + BX_2(j\omega)$
Delay	$x(t - \tau)$	$e^{-j\omega\tau}X(j\omega)$
Modulation	$e^{j\omega_0 t}x(t)$	$X(j(\omega - \omega_0))$
'Multiplication by t ' Differentiation in the frequency domain	tx(t)	$-\frac{dX(j\omega)}{d(j\omega)}$
Differentiation in the time domain	$\frac{dx(t)}{dt}$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^t x(\tau) d\tau$	$X(j\omega) \left[\pi \delta(\omega) + \frac{1}{j\omega} \right]$ = $\frac{1}{j\omega} X(j\omega) + \pi X(0) \delta(\omega)$
Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right), a\in {\rm I\!R}\backslash\{0\}$
Convolution	$x_1(t) * x_2(t)$	$X_1(j\omega)\cdot X_2(j\omega)$
Multiplication	$x_1(t) \cdot x_2(t)$	$\frac{1}{2\pi}X_1(j\omega)*X_2(j\omega)$
Duality	$x_1(t)$ $x_2(jt)$	$x_2(j\omega) \\ 2\pi x_1(-\omega)$
Symmetry relations	$x(-t) \\ x^*(t) \\ x^*(-t)$	$X(-j\omega)\ X^*(-j\omega)\ X^*(j\omega)$
Parseval theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} X(j\omega) ^2d\omega$

Appendix B.6 Properties of the *z*-Transform

Property	x[k]	X(z)	ROC
Linearity	$ax_1[k]+bx_2[k]$	$aX_1(z) + bX_2(z)$	$\operatorname{ROC} \supseteq$ $\operatorname{ROC} \{X_1\} \cap \operatorname{ROC} \{X_2\}$
Delay	$x[k-\kappa]$	$z^{-\kappa}X(z)$	ROC{ x }; separate consideration of $z = 0$ and $z \to \infty$
Modulation	$a^k x[k]$	$X\left(\frac{z}{a}\right)$	$\text{ROC} = \left\{ z \left \frac{z}{a} \in \text{ROC}\{x\} \right\} \right\}$
Multiplication by k	kx[k]	$-z\frac{dX(z)}{dz}$	$\operatorname{ROC}\{x\};$ separate consideration of $z = 0$
Time inversion	x[-k]	$X(z^{-1})$	$\operatorname{ROC} = \{ z \mid z^{-1} \in \operatorname{ROC} \{ x \} \}$
Convolution	$x_1[k] * x_2[k]$	$X_1(z) \cdot X_2(z)$	$\operatorname{ROC} \supseteq$ $\operatorname{ROC}\{x_1\} \cap \operatorname{ROC}\{x_2\}$
Multiplication	$x_1[k] \cdot x_2[k]$	$\frac{1}{2\pi j}\oint X_1(\zeta)X_2\Big(\frac{z}{\zeta}\Big)\frac{1}{\zeta}d\zeta$	multiply the limits of the ROC

Appendix B.5 Two-sided *z*-Transform Pairs

x[k]	$X(z) = \mathcal{Z}\{x[k]\}$	ROC
$\delta[k]$	1	$z\in {f C}$
$\varepsilon[k]$	$\frac{z}{z-1}$	z > 1
$a^k \varepsilon[k]$	$\frac{z}{z-a}$	z > a
$-a^k \varepsilon[-k-1]$	$\frac{z}{z-a}$	z < a
$k\varepsilon[k]$	$\frac{z}{(z-1)^2}$	z > 1
$ka^k \varepsilon[k]$	$\frac{az}{(z-a)^2}$	z > a
$\sin(\Omega_0 k)\varepsilon[k]$	$\frac{z\sin\Omega_0}{z^2 - 2z\cos\Omega_0 + 1}$	z > 1
$\cos(\Omega_0 k)\varepsilon[k]$	$\frac{z(z-\cos\Omega_0)}{z^2-2z\cos\Omega_0+1}$	z > 1