

Examination paper for TFY4280 Signal Processing

Academic contact during examination: Pawel Sikorski

Phone: 98486426

Examination date: 27.05.2016

Examination time (from-to): 0900 - 1300

Permitted examination support material:

- Simple calculator (according to NTNU exam regulations)
- K. Rottmann: Matematisk formelsamling
- Barnett and Cronin: Mathematical formulae
- Carl Angell og Bjørn Ebbe Lian: Fysiske størrelser og enheter, navn og symboler

Other information about the examp paper:

- Language: English
- Number of pages (including this page and attachments): [5](#page-4-0)
- Answer must be written in English or Norwegian. Number of points given to each sub-question is given in bold font. The maximum score for the exam is 100p.
- Attachment: 2 pages with transform tables and properties.

Checked by:

Date: Signature:

Q1. (30p) System $S_1\{\}\$ is described by a transfer function $H_1(s)$ given below.

$$
H_1(s) = \frac{1}{s^2 + 3s + 2}
$$

- A. Calculate unit step response for this system
- B. Design a discrete-time system which is equivalent to the system $S_1\{\}\}$ studied above. Find discrete time transfer function $H(z)$ and again calculate output if a discrete time unit step function $u[n]$ is given as an input. If necessary use $t_s = 1$ s and calculate only the few first terms of the output signal $(0 \le n < 3)$. Hint: to save time, use a difference equation for the system and

calculate the unit step response in the time domain.

Q2. (10p) Consider a discrete-time LTI system with a impulse response $h[n]$ given by:

$$
h[n] = (-\alpha)^n u[n]
$$

where $u[n]$ is the unit step function.

A. Is this system causal?

- **B.** For what range of α -values is this system BIBO stable?
- Q3. (10p) Find the discrete-time Fourier transform (DTFT) of the rectangular pulse sequence given by

$$
x[n] = u[n] - u[n - N]
$$

where $u[n]$ is the unit step function. This discrete-time signal is sampled with a sampling frequency ω_s , write the expression for the transform both in the discrete frequency domain and in the frequency domain.

Note: it is enough to write the aswer as a fraction of two complex functions and you do not need to arrive at an elegant expression.

Q4. (10p) Find the inverse z-transform of

$$
X(z) = z^2 \left(1 - \frac{1}{2} z^{-1} \right) \left(1 - z^{-1} \right) \left(1 + 2 z^{-1} \right) \quad 0 < |z| < \infty
$$

$$
x[n] = a^{-n}u[-n]
$$

Q6. (20p) If the Fourier transform of a signal $x(t)$ is given by $X(\omega)$, find an expression for the Fourier transform $X_s(\omega)$ of signal $x_s(t)$ defined as:

$$
x_s(t) = \delta_T(t)x(t)
$$

where

$$
\delta_T(t) = \sum_{k=-\infty}^{\infty} \delta(t - kt_s)
$$

Explain how obtained expression relates to Nyquist sampling rate condition.

HINT: expression for the Fourier transform of a periodic function might be useful here:

$$
F_p(\omega) = \sum_{n=-\infty}^{\infty} \omega_0 F(n\omega_0) \delta(\omega - n\omega_0)
$$

Q7. (10p) What is defined by a power density spectrum of a random signal and how can it be calculated? Sketch power density spectrum of white noise and band-limited white noise signals.

Appendix B.1 Bilateral Laplace Transform Pairs

Appendix B.2 Properties of the Bilateral Laplace Transform

x(t)	$X(s) = \mathcal{L}{x(t)}$	ROC
Linearity $Ax_1(t) + Bx_2(t)$	$AX_1(s) + BX_2(s)$	$_{\rm ROC}$ $\mathrm{ROC}\{X_1\}$ \cap ROC $\{X_2\}$
Delay $x(t-\tau)$	$e^{-s\mathcal{I}}X(s)$	not affected
Modulation $e^{at}x(t)$	$X(s-a)$	$Re\{a\}$ shifted by $\text{Re}\{a\}$ to the right
'Multiplication by t ', Differentiation in the frequency domain tx(t)	$-\frac{d}{ds}X(s)$	not affected
Differentiation in the time domain $\frac{d}{dt}x(t)$	sX(s)	ROC \supseteq $ROC{X}$
Integration $\int x(\tau)d\tau$	$\frac{1}{s}X(s)$	$\mathrm{ROC} \supseteq \mathrm{ROC}\{X\}$ $\bigcap \{s : \text{Re}\{s\} > 0\}$
Scaling x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC scaled by a factor of a

Appendix B.3 Fourier Transform Pairs

x(t)	$X(j\omega) = \mathcal{F}{x(t)}$	
$\delta(t)$	$\mathbf{1}$	
$\mathbf{1}$	$2\pi\delta(\omega)$	
$\dot{\delta}(t)$	$j\omega$	
$rac{1}{T} \pm \left(\frac{t}{T}\right)$	$\pm\pm\left(\frac{\omega T}{2\pi}\right)$	
$\varepsilon(t)$	$\pi\delta(\omega)+\frac{1}{i\omega}$	
rect(at)	$\frac{1}{ a }$ si $\left(\frac{\omega}{2a}\right)$	
si(at)	$\frac{\pi}{ a }$ rect $\left(\frac{\omega}{2a}\right)$	
$\frac{1}{t}$	$-j\pi sign(\omega)$	
sign(t)	$rac{2}{j\omega}$	
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$	
$\sin(\omega_0 t)$	$i\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
$e^{-\alpha t }, \ \alpha > 0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$	
$e^{-a^2t^2}$	$\frac{\sqrt{\pi}}{2}e^{-\frac{\omega^2}{4a^2}}$	

Appendix B.4 Properties of the Fourier Trans $for n$

Appendix B.6 Properties of the z -Transform

Property	x[k]	X(z)	ROC	
Linearity	$ax_1[k]+bx_2[k]$	$aX_1(z) + bX_2(z)$	ROC \supset $\mathrm{ROC}\{X_1\} \cap \mathrm{ROC}\{X_2\}$	
Delay	$x[k-\kappa]$	$z^{-\kappa}X(z)$	$\mathrm{ROC}\{x\};$ separate consideration of $z = 0$ and $z \rightarrow \infty$	
Modulation	$a^kx[k]$	$X\left(\frac{z}{a}\right)$	$\text{ROC}=\left\{z\left \frac{z}{a}\in\text{ROC}\{x\}\right\}\right\}$	
Multiplication $b\nu k$	kx[k]	$-z\frac{dX(z)}{dz}$	$\mathrm{ROC}\{x\};$ separate consideration of $z=0$	
Time inversion	$x[-k]$	$X(z^{-1})$	$\mathrm{ROC}=\{z\, \,z^{-1}\in\mathrm{ROC}\{x\}\}\$	
Convolution	$x_1[k] * x_2[k]$	$X_1(z) \cdot X_2(z)$	$ROC \supset$ $\mathrm{ROC}\{x_1\} \cap \mathrm{ROC}\{x_2\}$	
Multiplication	$x_1[k]\cdot x_2[k]$	$\frac{1}{2\pi i}\oint X_1(\zeta)X_2\left(\frac{z}{\zeta}\right)\frac{1}{\zeta}d\zeta$	multiply the limits of the ROC	

Appendix B.5 Two-sided z -Transform Pairs

