

Examination paper for TFY4280 Signal Processing

Academic contact during examination: Pawel Sikorski, phone: 98486426

Examination date: 02.06.2017

Examination time (from-to): 0900 - 1300

Permitted examination support material:

- Simple calculator (according to NTNU exam regulations)
- K. Rottmann: Matematisk formelsamling or an equilivalent, for example: Formulaires et tables: mathématiques, physique, chimie. Editions du Tricorne, Genève.
- Barnett and Cronin: Mathematical formulae
- Carl Angell og Bjørn Ebbe Lian: Fysiske størrelser og enheter, navn og symboler

Other information about the examp paper:

- Language: English
- Number of pages (including this page and attachments): 5
- Answer must be written in English or Norwegian. Number of points given to each question is given in bold font. The maximum score for the exam is **100p**.
- Attachment: 2 pages with transform tables and properties.

Checked by:

Date:

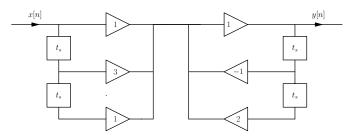
Signature:

- $+ \underbrace{C}_{v_{i}(t)} \underbrace{L}_{i} + \underbrace{V}_{o}(t)$
- **Q1.** (35p) Consider a simple circuit shown below, for which R = 10, C = 0.0235 and L = 10 in the appropriate s.i. units.

- A. Write a differential equation which relates the output $v_o(t)$ with the input $v_i(t)$ for this system. (5p)
- **B.** Give a definitions of an impulse response function, a transfer function and a frequency response function. (5p)
- C. Calculate the impulse response function for the system given above. It is sufficient to express h(t) as a sum of complex exponential functions. Explain how you would used this function to calculate the output signal y(t) for a given input signal x(t). (10p)
- D. Calculate the transfer function and the frequency response function of this system. For the frequency response function, you do not need to arrive at a elegant expressions. (5p)
- E. Draw a zero/poles diagram. (5p)
- F. What kind of circuit is this? (5p)
- Q2. (10p) Find the z-transform of the following signal:

$$x[n] = \{0, 1, 2, 3, \underline{4}, 3, 2, 1, 0\}$$

Q3. (20p) Consider a discrete-time system described by a block diagram shown below.



- A. Use this block diagram to calculate a discrete-time impulse response function for this system. Calculate for n < 6. (10p)
- **B.** Use a method of choice to determine output signal y[n] for n < 8 and the input signal given below. (10p)

$$x[n] = \{\underline{1}, 0, 1, 0\} \text{ and } 0 \text{ otherwise.}$$

Q4. (10p) Determine the convolution

$$y(t) = e^{-at} \epsilon(t) * \epsilon(t)$$

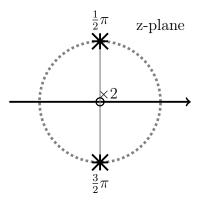
using direct method (definition) and using Fourier transform method.

- Q5. (25p)
 - A. Use definition of a unilateral z-transform (\mathcal{Z}) to determine

$$\mathcal{Z}\left\{ u[n]e^{\beta n}\right\} =$$

and then use this to calculate $\mathcal{Z} \{u[n]cos(bn)\}$ (10p)

B. Zeros/poles diagram on the z-plane for a transfer function H(z) of a LTI discrete-time system is given below. Use this diagram to find the difference equation which describes this system. (15p)



x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
$\delta(t)$	1	$s \in \mathbb{C}$
$\varepsilon(t)$	$\frac{1}{s}$	$\operatorname{Re}\{s\} > 0$
$e^{-at}\varepsilon(t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$-e^{-at}\varepsilon(-t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\} < \operatorname{Re}\{-a\}$
$t\varepsilon(t)$	$\frac{1}{s^2}$	$\operatorname{Re}\{s\} > 0$
$t^n \varepsilon(t)$	$\frac{n!}{s^{n+1}}$	$\operatorname{Re}\{s\} > 0$
$te^{-at}\varepsilon(t)$	$\frac{1}{(s+a)^2}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$t^n e^{-at} \varepsilon(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$\cos(\omega_0 t)\varepsilon(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$e^{-at}\cos(\omega_0 t)\varepsilon(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$e^{-at}\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$t\cos(\omega_0 t)\varepsilon(t)$	$\frac{s^2 - \omega_0^2}{(s^2 + \omega_0^2)^2}$	$\operatorname{Re}\{s\} > 0$
$t\sin(\omega_0 t)\varepsilon(t)$	$\frac{2\omega_0 s}{(s^2 + \omega_0^2)^2}$	$\operatorname{Re}\{s\} > 0$

Appendix B.1 Bilateral Laplace Transform Pairs

Appendix B.2 Properties of the Bilateral Laplace Transform

x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
$\begin{aligned} \text{Linearity} \\ Ax_1(t) + Bx_2(t) \end{aligned}$	$AX_1(s) + BX_2(s)$	$ \begin{array}{c} \operatorname{ROC} & \supseteq \\ \operatorname{ROC}\{X_1\} \\ \cap \operatorname{ROC}\{X_2\} \end{array} $
Delay $x(t-\tau)$	$e^{-s\tau}X(s)$	not affected
Modulation $e^{at}x(t)$	X(s-a)	$\operatorname{Re}\{a\}$ shifted by $\operatorname{Re}\{a\}$ to the right
'Multiplication by t ', Differentiation in the frequency domain tx(t)	$-rac{d}{ds}X(s)$	not affected
Differentiation in the time domain $\frac{d}{dt}x(t)$	sX(s)	$\operatorname{ROC}_{\operatorname{ROC}\{X\}}$
Integration $\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{s}X(s)$	$\begin{array}{l} \operatorname{ROC} \supseteq \operatorname{ROC}\{X\} \\ \cap \{s: \operatorname{Re}\{s\} > 0\} \end{array}$
$\begin{array}{c} \text{Scaling} \\ x(at) \end{array}$	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC scaled by a factor of a

Appendix B.3 Fourier Transform Pairs

x(t)	$X(j\omega) = \mathcal{F}\{x(t)\}$	
$\delta(t)$	1	
1	$2\pi\delta(\omega)$	
$\dot{\delta}(t)$	$j\omega$	
$\frac{1}{T} \amalg \left(\frac{t}{T} \right)$	$\bot \amalg \left(\frac{\omega T}{2\pi}\right)$	
$\varepsilon(t)$	$\pi\delta(\omega) + \frac{1}{j\omega}$	
rect(at)	$\frac{1}{ a }$ si $\left(\frac{\omega}{2a}\right)$	
si(at)	$\frac{\pi}{ a } \operatorname{rect}\left(\frac{\omega}{2a}\right)$	
$\frac{1}{t}$	$-j\pi \mathrm{sign}(\omega)$	
$\operatorname{sign}(t)$	$\frac{2}{j\omega}$	
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$	
$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
$e^{-\alpha t }, \; \alpha > 0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$	
$e^{-a^2t^2}$	$\frac{\sqrt{\pi}}{a}e^{-\frac{\omega^2}{4a^2}}$	

Appendix B.4 Properties of the Fourier Transform

Iorm		
	x(t)	$X(j\omega)=\mathcal{F}\{x(t)\}$
Linearity	$Ax_1(t) + Bx_2(t)$	$AX_1(j\omega) + BX_2(j\omega)$
Delay	$x(t - \tau)$	$e^{-j\omega \tau} X(j\omega)$
Modulation	$e^{j\omega_0 t}x(t)$	$X(j(\omega - \omega_0))$
'Multiplication by t ' Differentiation in the frequency domain	tx(t)	$-\frac{dX(j\omega)}{d(j\omega)}$
Differentiation in the time domain	$\frac{dx(t)}{dt}$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^t x(\tau) d\tau$	$X(j\omega) \left[\pi \delta(\omega) + \frac{1}{j\omega} \right]$ = $\frac{1}{j\omega} X(j\omega) + \pi X(0)\delta(\omega)$
Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right), a\in \mathrm{IR}\backslash\{0\}$
Convolution	$x_1(t) * x_2(t)$	$X_1(j\omega) \cdot X_2(j\omega)$
Multiplication	$x_1(t) \cdot x_2(t)$	$\frac{1}{2\pi}X_1(j\omega)*X_2(j\omega)$
Duality	$\begin{array}{c} x_1(t) \\ x_2(jt) \end{array}$	$\begin{array}{c} x_2(j\omega) \\ 2\pi x_1(-\omega) \end{array}$
Symmetry relations	$x(-t) \\ x^*(t) \\ x^*(-t)$	$X(-j\omega)$ $X^*(-j\omega)$ $X^*(j\omega)$
Parseval theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} X(j\omega) ^{2}d\omega$

Appendix B.6 Properties of the *z*-Transform

Property	x[k]	X(z)	ROC
Linearity	$ax_1[k]+bx_2[k]$	$aX_1(z) + bX_2(z)$	$\operatorname{ROC} \supseteq$ $\operatorname{ROC} \{X_1\} \cap \operatorname{ROC} \{X_2\}$
Delay	$x[k - \kappa]$	$z^{-\kappa}X(z)$	ROC{ x }; separate consideration of $z = 0$ and $z \to \infty$
Modulation	$a^k x[k]$	$X\left(\frac{z}{a}\right)$	$\text{ROC} = \left\{ z \left \frac{z}{a} \in \text{ROC}\{x\} \right\} \right\}$
Multiplication by k	kx[k]	$-z\frac{dX(z)}{dz}$	$\operatorname{ROC}\{x\}$; separate consideration of z = 0
Time inversion	x[-k]	$X(z^{-1})$	$\operatorname{ROC} = \{ z \mid z^{-1} \in \operatorname{ROC} \{ x \} \}$
Convolution	$x_1[k] * x_2[k]$	$X_1(z)\cdot X_2(z)$	$\operatorname{ROC} \supseteq$ $\operatorname{ROC}\{x_1\} \cap \operatorname{ROC}\{x_2\}$
Multiplication	$x_1[k]\cdot x_2[k]$	$\frac{1}{2\pi j}\oint X_1(\zeta)X_2\Bigl(\frac{z}{\zeta}\Bigr)\frac{1}{\zeta}d\zeta$	multiply the limits of the ROC

Appendix B.5 Two-sided *z*-Transform Pairs

x[k]	$X(z) = \mathcal{Z}\{x[k]\}$	ROC
$\delta[k]$	1	$z\in \mathbf{C}$
$\varepsilon[k]$	$\frac{z}{z-1}$	z > 1
$a^k \varepsilon[k]$	$\frac{z}{z-a}$	z > a
$-a^k \varepsilon [-k-1]$	$\frac{z}{z-a}$	z < a
$k\varepsilon[k]$	$\frac{z}{(z-1)^2}$	z > 1
$ka^k \varepsilon[k]$	$\frac{az}{(z-a)^2}$	z > a
$\sin(\Omega_0 k)\varepsilon[k]$	$\frac{z\sin\Omega_0}{z^2-2z\cos\Omega_0+1}$	z > 1
$\cos(\Omega_0 k)\varepsilon[k]$	$\frac{z(z - \cos \Omega_0)}{z^2 - 2z \cos \Omega_0 + 1}$	z > 1