Q1 DTFT and DFT (25p)

- 1. Explain what is described by the term "discrete frequency".
- 2. Find DTFT of the following discrete time signal:

$$x_1[n] = a^n u[n]$$

where u[n] is the discrete unit step function. Use $t_s = 1$ ms.

- 3. Sketch the amplitude response for a = 0.8 using discrete frequency on the x-axis.
- 4. Sketch the amplitude response for a = 0.8 using frequency on the x-axis.
- 5. What would you needed to be able to calculate DFT of the same signal? What would be the main difference between DFT and DTFT? Please explain.
- Q2 System output and frequency response. (25p)
 - 1. A LTI system is characterized by the impulse response function given below. Calculate and plot the response of that system to a unit step input $x_1(t) = \varepsilon(t)$ and to a delta impulse input $x_2(t) = \delta(t)$.

$$h(t) = \varepsilon(t) e^{-t} - 2e^{-3t} \varepsilon(t)$$

Also here, $\varepsilon(t)$ is the unit step function.

2. Calculate frequency response of this system for $\omega = 0$ and $\omega = 2\pi s^{-1}$. Explain how you would calculate the frequency response for any given frequency.

Q3 Stochastic Signals (25p)

- 1. What is an "ergodic random process"? What is a "stationary random process"?
- 2. Define auto-correlation function (ACF). Sketch ACF for two signals, for which few sample functions are shown below, assuming that they are drawn on the same time scale.

Q4 Filters. (25p)

- 1. For time-discrete systems, filters are often characterized as IIR or FIR. Explain what is described by these terms.
- 2. For which of these filter types, can we use discrete convolution to calculate output for an input signal similar to $x[n] = \{\underline{1}, 1, 1, 1, 1, 1, 1\}$? Do not calculate but explain.
- 3. A low pass filters is described by the difference equation given below. Use zeros/poles diagram on an appropriate frequency plane to illustrate that this system is indeed a low pas filter.

$$y[n] = \alpha x[n] + (1 - \alpha)y[n - 1]$$

where α is a constants and $0 < \alpha < 1$

4. Is this a IIR or FIR filter? Please explain.

x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
$\delta(t)$.	1	$s \in \mathbb{C}$
$\varepsilon(t)$	$\frac{1}{s}$	$\operatorname{Re}\{s\}>0$
$e^{-at}\varepsilon(t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$-e^{-at}\varepsilon(-t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\} < \operatorname{Re}\{-a\}$
$t\varepsilon(t)$	$\frac{1}{s^2}$	$\operatorname{Re}\{s\} > 0$
$t^n \varepsilon(t)$	$\frac{n!}{s^{n+1}}$	$\operatorname{Re}\{s\} > 0$
$te^{-at}\varepsilon(t)$	$\frac{1}{(s+a)^2}$	$\operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$
$t^n e^{-at} \varepsilon(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$\cos(\omega_0 t)\varepsilon(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\}>0$
$e^{-at}\cos(\omega_0 t)\varepsilon(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$e^{-at}\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$t\cos(\omega_0 t)\varepsilon(t)$	$\frac{s^2 - \omega_0^2}{(s^2 + \omega_0^2)^2}$	$\operatorname{Re}\{s\} > 0$
$t\sin(\omega_0 t)\varepsilon(t)$	$\frac{2\omega_0 s}{(s^2 + \omega_0^2)^2}$	$\operatorname{Re}\{s\} > 0$

Appendix B.1 Bilateral Laplace Transform Pairs

Appendix B.2 Properties of the Bilateral Laplace Transform

x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
Linearity $Ax_1(t) + Bx_2(t)$	$AX_1(s) + BX_2(s)$	$ \begin{array}{c} \operatorname{ROC} & \supseteq \\ \operatorname{ROC}\{X_1\} \\ \cap \operatorname{ROC}\{X_2\} \end{array} $
$\begin{array}{l} \text{Delay} \\ x(t-\tau) \end{array}$	$e^{-s\tau}X(s)$	not affected
Modulation $e^{at}x(t)$	X(s-a)	$Re\{a\}$ shifted by $Re\{a\}$ to the right
'Multiplication by t ', Differentiation in the frequency domain tx(t)	$-rac{d}{ds}X(s)$	not affected
Differentiation in the time domain $\frac{d}{dt}x(t)$	sX(s)	$\operatorname{ROC}_{\operatorname{ROC}\{X\}}$
Integration $\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	$ \begin{array}{l} \operatorname{ROC} \supseteq \operatorname{ROC}\{X\} \\ \cap \{s : \operatorname{Re}\{s\} > 0\} \end{array} $
$\begin{array}{c} \text{Scaling} \\ x(at) \end{array}$	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC scaled by a factor of a

Appendix B.3 Fourier Transform Pairs

	x(t)	$X(j\omega) = \mathcal{F}\{x(t)\}$
	$\delta(t)$	1
	1	$2\pi\delta(\omega)$
	$\dot{\delta}(t)$	$j\omega$
	$\frac{1}{T} \perp \perp \perp \left(\frac{t}{T}\right)$	$\bot \amalg \left(\frac{\omega T}{2\pi}\right)$
	$\varepsilon(t)$	$\pi\delta(\omega) + \frac{1}{j\omega}$
4	rect(at)	$\frac{1}{ a }$ si $\left(\frac{\omega}{2a}\right)$
	si(at)	$\frac{\pi}{ a } \operatorname{rect}\left(\frac{\omega}{2a}\right)$
	$\frac{1}{t}$	$-j\pi \mathrm{sign}(\omega)$
	$\operatorname{sign}(t)$	$\frac{2}{j\omega}$
	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
	$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
	$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
	$e^{-\alpha t }, \ \alpha > 0$	$\frac{2\alpha}{\alpha^2+\omega^2}$
	$e^{-a^2t^2}$	$\frac{\sqrt{\pi}}{a}e^{-\frac{\omega^2}{4a^2}}$

Appendix B.4 Properties of the Fourier Transform

Iorm		
	x(t)	$X(j\omega)=\mathcal{F}\{x(t)\}$
Linearity	$Ax_1(t) + Bx_2(t)$	$AX_1(j\omega) + BX_2(j\omega)$
Delay	$x(t - \tau)$	$e^{-j\omega \tau}X(j\omega)$
Modulation	$e^{j\omega_0 t}x(t)$	$X(j(\omega - \omega_0))$
'Multiplication by t ' Differentiation in the frequency domain	tx(t)	$-rac{dX(j\omega)}{d(j\omega)}$
Differentiation in the time domain	$\frac{dx(t)}{dt}$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^t x(\tau) d\tau$	$\begin{split} X(j\omega) \left[\pi \delta(\omega) + \frac{1}{j\omega} \right] \\ = \ \frac{1}{j\omega} X(j\omega) + \pi X(0) \delta(\omega) \end{split}$
Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right), a\in \mathrm{I\!R}\backslash\{0\}$
Convolution	$x_1(t) * x_2(t)$	$X_1(j\omega) \cdot X_2(j\omega)$
Multiplication	$x_1(t) \cdot x_2(t)$	$\frac{1}{2\pi}X_1(j\omega)*X_2(j\omega)$
Duality	$\begin{array}{c} x_1(t) \\ x_2(jt) \end{array}$	$x_2(j\omega)$ $2\pi x_1(-\omega)$
Symmetry relations	$x(-t) \\ x^{*}(t) \\ x^{*}(-t)$	$X(-j\omega) \ X^*(-j\omega) \ X^*(j\omega)$
Parseval theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} X(j\omega) ^{2}d\omega$

Appendix B.6 Properties of the *z*-Transform

Property	x[k]	X(z)	ROC
Linearity	$ax_1[k]+bx_2[k]$	$aX_1(z) + bX_2(z)$	$\operatorname{ROC} \supseteq$ $\operatorname{ROC} \{X_1\} \cap \operatorname{ROC} \{X_2\}$
Delay	$x[k-\kappa]$	$z^{-\kappa}X(z)$	ROC{ x }; separate consideration of $z = 0$ and $z \to \infty$
Modulation	$a^k x[k]$	$X\left(\frac{z}{a}\right)$	$\text{ROC} = \left\{ z \left \frac{z}{a} \in \text{ROC}\{x\} \right\} \right\}$
Multiplication by k	kx[k]	$-z\frac{dX(z)}{dz}$	$\operatorname{ROC}\{x\};$ separate consideration of $z = 0$
Time inversion	x[-k]	$X(z^{-1})$	$\operatorname{ROC} = \{ z \mid z^{-1} \in \operatorname{ROC}\{x\} \}$
Convolution	$x_1[k] \ast x_2[k]$	$X_1(z) \cdot X_2(z)$	$\operatorname{ROC} \supseteq$ $\operatorname{ROC}\{x_1\} \cap \operatorname{ROC}\{x_2\}$
Multiplication	$x_1[k]\cdot x_2[k]$	$\frac{1}{2\pi j} \oint X_1(\zeta) X_2\Big(\frac{z}{\zeta}\Big) \frac{1}{\zeta} d\zeta$	multiply the limits of the ROC

Appendix B.5 Two-sided *z*-Transform Pairs

x[k]	$X(z) = \mathcal{Z}\{x[k]\}$	ROC
$\delta[k]$	1	$z\in {f C}$
$\varepsilon[k]$	$\frac{z}{z-1}$	z > 1
$a^k \varepsilon[k]$	$\frac{z}{z-a}$	z > a
$-a^k \varepsilon[-k-1]$	$\frac{z}{z-a}$	z < a
$k\varepsilon[k]$	$\frac{z}{(z-1)^2}$	z > 1
$ka^k \varepsilon[k]$	$\frac{az}{(z-a)^2}$	z > a
$\sin(\Omega_0 k)\varepsilon[k]$	$\frac{z\sin\Omega_0}{z^2 - 2z\cos\Omega_0 + 1}$	z > 1
$\cos(\Omega_0 k)\varepsilon[k]$	$\frac{z(z-\cos\Omega_0)}{z^2-2z\cos\Omega_0+1}$	z > 1