

NTNU, DEPARTMENT OF PHYSICS

Exam TFY4280 Signal Processing spring 2023

Lecturer: Professor Jens O. Andersen Department of Physics, NTNU

Wednesday June 7 2023 15:00-19:00

Permitted examination aids according to code H: No printed or hand-written support material is allowed All calculators allowed

Problem 1

Consider the RLC series circuit shown in Fig. 1.

Figure 1: RLC series circuit.

a) Write down the integro-differential equation for the current i(t). Assume that the charge Q on the capacitor vanishes for $t \leq 0$.

b) The output is the voltage across R_L . Calculate the frequency response function H(s) and express your result in terms of the two quantities α and ω_0 defined as

$$\alpha = \frac{R}{2L}, \qquad (1)$$

$$\omega_0 = \frac{1}{\sqrt{LC}} \,. \tag{2}$$

What is the engineering dimension of α and ω_0 ?

c) Find $|H(i\omega)|$. Find the frequency ω_c that maximizes $|H(i\omega)|$. What type of filter is this circuit?

Problem 2

Fig. 2 shows a continuous time LTI system with input signal x(t) and output signal y(t). The unit impulse response function of the system is denoted by h(t).

$$x(t) \longrightarrow LTI \longrightarrow y(t)$$

Figure 2: Continuous time LTI system.

- a) Show that h(t) = 0 for t < 0 if the LTI system is causal.
- **b)** Show that the system is BIBO stable if h(t) is absolutely integrable.

c) Write down the expression for y(t) in terms of x(t) and the unit impulse response function h(t).

d) Given $h(t) = e^{-t}u(t)$ and x(t) = u(t), where u(t) is the unit step function. Calculate the resulting signal y(t).

Problem 3

Consider a discrete-time LTI system described by the difference equation

$$y[n] - y[n-1] + ay[n-2] = x[n], \qquad (3)$$

where a is real parameter.

- a) Find the transfer function H(z).
- **b**) For what values of *a* is the system BIBO stable?

c) Set a = 0. Find the natural response $y_c[n]$. Calculate the forced response $y_p[n]$ for the discrete unit step function. Find the complete solution given the initial value y[0] = 1.

Problem 4

This problem consists of two questions that are independent of each other.

a) Consider the function f(x) = 1 - |x| for $x \in [-1, 1]$ and its periodic extension. Its Fourier series is

$$f(x) = A_0 + \sum_{k=1}^{\infty} \left[A_k \cos(k\omega_0 x) + B_k \sin(k\omega_0 x) \right] , \qquad (4)$$

where $\omega_0 = \pi$, A_k , and B_k are the Fourier coefficients. Explain why the coefficients B_k vanish for all k, $B_k = 0$. Does the Fourier series converge to f(x) for all x?

b) Let x[n] and y[n] be two discrete time signals. The convolution of x[n] and y[n] is denoted by w[n] = x[n] * y[n]. Find the z-transform of w[n].