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NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
Department of Physics

Contacts during the exam:
Pawel Sikorski, phone: 98486426

EXAM
TFY4280 Signal Processing

Sat. 2 June 2012. 09:00

Examination support materials:

e Simple calculator (according to NTNU exam regulations)

e K. Rottmann: Matematisk formelsamling (eller tilsvarende)

e Carl Angell og Bjorn Ebbe Lian: Fysiske stgrrelser og enheter, navn og symboler (eller tilsvarende)

Answer must be written in English or Norwegian. Number of points given to each sub-question is
given in bold font. The maximum score for the exam is 100p. The exam consists of 4 questions.
Attachment: 2 pages with transform tables and properties.

Q1 (25p)

A) (15p) Calculate response (output y(t)) for a unit step function input (£(¢)) and delta
impulse input 0(¢) from a given impulse response function h; in the time domain:

ha(t) = (e7" — e ) e(t)

B) (10p) How would you describe the output of this LTI system, when a random signal x(¢)
described by its p, and ¢,,(7) is the input signal. Explain briefly and calculate f,,.

A) For x(t) = i(t)
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For z(t) = £(t) we need to find Laplace transform of hy(t):

I 1 I s+2-s5—-1 1
LM}y =L =) e} = 0 -5 = (s+1)(s+2)  (s+1)(s+2)
X(s) :%
1 A B C
Y(S):H(S)X(S): S(S+1)(3+2) :;—i_ (8+1)+8+2
1 1
A=5 B=-1 0=
check:
0.5 1 0.5  0.5(s+2)(s+1)—s(s+2)+05s(s+1)
S GiD Gro) s(s+1)(s+2) -
0.55% +3/25 + 1 — 82 — 25+ 0.5s2 + 0.5s 1 OK!
s(s+1)(s+2) s(s+1)(s+2) '
Then:
0.5 1 0.5

Y(s) = — —

(8 -+ 1) + (5 + 2)
y(t) = (1) (05 — e +0.5¢7)

B) For random signal, first we consider what happens with the mean

) = (e"—e*)e(t)
y(t) = x(t)* hi(t)
py(t) = E{x(t) «ho(t)} = E{x(t)} * ha(t) = pa(t) * ha(t)

since

pa(t) = fha
(time independent)

o0 o0

[y = fls / hq(t)dt = py / (e —e ) e(t)dt = ,ux/ (e7" —e ) dt = 0.5,
0

—0o0 —0o0

For the ACF:

Onn(T) * Pae(T)
hy(T) * hy(—7)

Pyy(T)
©nn(T)

Where @, (7) can be calculated from analytical expression for hj.

Q2 (25p) Consider LTT system described by:

H—; + 5% + 4} y(t) = {2% + 6} z(t)

A) (10p) Find the impulse response h(t)
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B) (10p) Find the unit step response s(t) by using €(t¢) as input

C) (5p) Verify your result by showing that h(t) = < s(¢)

A) We will first find the system transfer function H(s) by taking the Laplace transform of the
given ODE,

(% + 5% + 4) y(t) = (2% + 6) x(t)
= (5% 4+ 5s +4)Y(s) = (25 + 6) X (s).

Transfer function and its partial fraction expansion (verify!) is

Y (s) 25+ 6 25+ 6 4 1 2 1

X(s)_s2+5s+4:(s+1)(s+4) 33+1+§s+4

Thus the impulse response is

ht) = 2 H{H(s)} = = (27 + e ) e(t)

Wl N

B) Laplace transform of the unit step input is X (s) = 1/s. The output of the system in the
Laplace domain is given by

2546 1 31 4 1 1 1
(5) (5)X(s) (s+1)(s+4)s 2s 3s+1 6s+4

Inverse transforming gives the time-domain response,

C) For t > 0 we get (othewise we have to differentiate €(t)),

dy<t> 1 —1 4 —4t 2 —t —4t
= * 1 - 2 —
e (—36 + 5e 3( e +e ) =h(t)

Q3 (25p) Explain the difference between FT, DFT and DTFT with respect to time domain signals
for which those are calculated and resulting frequency representations. In a frequency range
w = 27“ € [—30,30], sketch approximate absolute values of FT, DTFT and DFT of a signal

defined by:
y(t) = e "
for a = 2s7! and, where necessary, using sampling time ¢, = 0.25s and signal duration t €
[—3, 3].
HINT:
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Figure 3: Question Q3

FT

and here x(t) is continius and defined for ¢ € [—00, 00]. Resulting transform is continius
in w and also defined for w € [—o0, 0],

DTFT Here the time domain signal is discreet, ¢ € [—00,00], the resulting transform is

continues in frequency, and periodic with a period w;, w € [—%, %]

2m 2m
Wsg = — = —— =87
ts 0.25
Fy(w) = 2mws Z F(w — nwy)

DFT Both periodic and discreet in time domain and in the frequency domain. To calculate
we need to define time domain periodicity of the signal:

t=-3:3s
L=6/0.25=24

DFT is periodic with a frequency w = w, and defined at points in the frequency space
wsk /L where L is the length (periodicity) of the signal in the time domain.

Q4 (25p) The figure below (Figure {4)) shows a digital filter (DSP) in which the delays are 0.5 ms.

A) (10p) Write down the difference equation and from this derive Z-transform of the transfer
function. Using a method of choice, analyse the system and calculate 5 first output terms
(0 < n < 5) for the unit step excitation and o = 0.1535. What kind of filter is this?
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z[n]

(1-a)

Figure 4: Question Q4

B) (15p) Now you would like to design an analogue 1st order Butterworth filter (using one
capacitance C and one resistance R = 10002) with approximately the same frequency
response. Determine needed capacitance C and plot filter circuit diagram.

HINT Derive expression for inpulse response of the DSP and Butterworth filters. For filters
with similar frequency response, the inpulse respons function will depend on time in the
same manner (h(t)/h(0) = h[n]/h[0]). This also maight be useful:

a" = (eﬁ)n Ina =0
t = n-tg

A)

For our filter we can write the difference equation as:

For unit step response:

and then
yn]=1—-(1—-a)"™ n>0

y[n] = [0.1535 0.2834 0.3934 0.4865 0.5654 |

B
D%P filters inpulse response can be calculated directly from its z-transform
oz z
H(z) = z—(1—a) :az—(l—a)
hln] = a(l—a)" n>0
hin] = a(l —a)" =« (eﬁ)n l—a=2¢"
g = In(l—a)
hln] = aet=9" = (.1535¢0166™

For o = 0.1535, § = —0.1667. Now we need impulse response for a first order Butterworth low
pass filter.
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Figure 5: Circuit diagram for Butterworth low pass filter

1 _ 1/RC  w,
1—|—8R0_S+R—1C_S+wc
h(t) = wee ™

H(s) =

Now we just have to compare time constant in both impulse response functions

h(t) = wee ™

h[n] _ aeln(l—a)n
Att=1-t,,n=1 and:

h(ts) = wee v

h[l] _ CLeln(l—oz)l
tswe = —In(l —a)
};SC' = —In(1-a)
I —In(l-a)
RC ts
ls
he = = In(1 — «)
t, _05x 1073

—In(l —a)R  .167-1000
C = 3x10°°F

or simpler:
b i)
h(0) — h[0]
In(l—-a)n __ e*twc
t
In(l —a) = ——w.=tw,
n
Il -a) N
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Appendix B.1 Bilateral Laplace Transform Pairs

Appendix B.3 Fourier Transform Pairs

(t) X(jw) = F{z()}
5(t) 1
1 2rd(w)
5(t) Jjw
1 t wT
7 (7) ()
1
e(t) mo(w) + 7o
rect(at) ﬁsi (;_a)
si(at) %rect <;—a)
n —jmsign(w)
sign(t) ]%
eJwot 2m8(w — wo)
cos(wot) 7[6(w + wo) + 6(w — wo)]
sin(wot) Jm[d(w +wo) = d(w — wo)]
2«
et o >0 peN
e’ \/—7_‘-&_4%27

() X(s) = L{z(t)} ROC |
5(t) 1 seC
1
e(t) - Re{s} >0
s
at 1 7 Appendix B.2 Properties of the Bilateral Laplace
il sta et Transform
1
- —at -— -
e~ %e(—t) Tra Re{s} < Re{—a} B
x(t) X(s) = L{z(t)} ROC
1
te(t) = Re{s} >0 ROC S
i Linearity =
N ! Az (t) + Baa(t) AXu(e) + BXa(s) | ROCLIL)
tre(t) sy Re{s} >0 n {X>}
1 De;lay e TX(s) not affected
te=ate(t) Grar Re{s} > Re{—a} z(t — 7)
nl Modulation X(s—a) Ref{a} shifted by
the™e(t) (s+ a.)"+1 Re{s} > Re{—a} e*a(t) s Re{a} to the right
. wo ‘Multiplication by ¢,
sin(wot)e(t) s2 +wd Re{s} >0 Differentiation in the d
. ——X(s) not affected
8 frequency domain ds
cos(wot)e(t) v Re{s} >0 ta(t)
i ] PR
oot | i | Rt || Dl wo 2
- 0 L sX(s) ROC{X}
e~ sin(wot )= (t) m Re{s} > Re{—a} dt
2 — w3 Integration 1 ROC 2 ROC{X
t te(t 0 Re{s} >0 ¢ 1 2 {X3
cos(wot)e(t) &+ a2 e{s} e(2)dz ;X N{s : Re{s} > 0}
. 2wps .
tsin(wot)e(t) [T Re{s} >0 Sealin 1 R ROC scaled by a
& —X (*) factor of
z(at) al a o

Appendix B.4

Properties of the Fourier Trans-

form
z(t) X(jw) = Flz(t)}

Linearity Az (t) + Bxo(t) AX(jw) + BX2(jw)
Delay z(t —7) e T X (jw)
Modulation edwoty(t) X(j(w — wp))
‘Multiplication by ¢’ .
Differentiation in the ta(t) - dX(,]w)
frequency domain d(jw)
Differentiation in the dax(t) WX (jw)
time domain dt Jwalw

X(jo) [ro6) + ]H

t
Integration / z(z)dr 1
—o0 = —X(
X () +7X(05(0)
Scaling o(at) X (%) . aeR\{0}
Convolution @1 (t) * 2a(t) X1 (jw) - Xa(jw)
Multiplication z1(t) - z2(t) QLX1 (jw) * X2 (jw)
™
Dualit z1(t) @2 (jw)
uality z2(jt) 21z (—w)
z(-t) X(—jw)
Symmetry relations z*(t) X*(—jw)
z*(=t) X*(jw)

Parseval theorem

/:; lz(t))? dt

e,
5 | KGoPa
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Appendix B.6 Properties of the z-Transform

Property z[k] X(z) ROC
. . ROC D
Linearity azy [k]+bza[k] aX1(2) +bXa(z) ROC{;(l JAROC{ Xz}
ROC{z}; separate
Delay zlk — K] 27rX(z) consideration of
z=0and z — o0
Modulation akz k] X (E> ROC= {z z GROC{z}}
a a
Multiplication dX (z) ROC.{:E};  separate
by k ka[k] = consideration of
z=0
Time inversion z[—k] X(z71) ROC={z|s~1€ROC{z}}
. ROC D
Convolution z1[k] * 22 K] Xi1(2) - Xa(z) ROC{;l}OROC{IQ}
e . 1 z\1 . | multiply the
Multiplication | z1[k] - z2[k] o7 }{Xl (€)X, (C) Zd(

limits of the ROC

Appendix B.5 Two-sided z-Transform Pairs

2[k] X(2) = Z{z[k]} ROC

6[k] 1 z€C

e[¥] — 2| > 1
a*elk] < 2| > lal
—dbe[—k — 1] Zfa 2| < lal
kelk] ﬁ 2] > 1
kaelk] ﬁi 2| > |al
sin(Qok)e[k] % l2| > 1
cos(Qok)elk] %%‘1—1 2] > 1




