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NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
Department of Physics

Contacts during the exam:
Pawel Sikorski, phone: 98486426

EXAM
TFY4280 Signal Processing

Friday. 24th May 2013. 09:00

Examination support materials:

e Simple calculator (according to NTNU exam regulations)
e K. Rottmann: Matematisk formelsamling (eller tilsvarende)
e Barnett and Cronin: Mathematical formulae

e Carl Angell og Bjorn Ebbe Lian: Fysiske stgrrelser og enheter, navn og symboler (eller tilsvarende)

Answer must be written in English or Norwegian. Number of points given to each sub-question is
given in bold font. The maximum score for the exam is 100p. The exam consists of 4 questions.
Attachment: 2 pages with transform tables and properties.

Q1 (25p) For a LTI system with unknown characteristics, a signal x(t) = e(t —to) —(t — t1) results
in a output y(t) given by:

y(t) = h(t) x2(t) = e(t — t1) (e "2 —1) —e(t — t,) (e /2 — 1)

A) (10p) Find the impulse response function h(t) for this system.

To get the inpulse response one need first to find the Laplace thansform of the input and
the output. We make use of time shift properties

y(t) =e(t —t1) (772 — 1) —e(t —t,) (7102 —1)

V(s) = e (,s,ﬂ {e(t)e" W2} — %) + e G - {5(t)e_(t)/2}> =
. ( 1 1> Lt (1 1 )
=e — = +e == =
s+05 s s s+0.5
(et — ety (LY e ey (222205
= (e ‘ )(3+O.5 3)_(6 ‘ )(S(S+O.5)>
_ —sto __ _—st1 05 _ 1 —stog __ ,—sl1 1
= (e <) (3(3—1—0.5)) s (e ) (1 +s/0.5)

The input
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Comparing input with the output we see that:

B 1 05

 14+s5/05  s+05
h(t) = 0.5¢(t)e """

H(s)

B) (10p) Find the frequency response |H (jw)| for w = 1,10, 100Hz
From above

1
H(jw) =
%) = 1550705
, 1
|H(jw)| = ———=
Ji+%
we = 0.5

|H(1)] = 0.4472 = —7dB  |H(10)| = 0.0499 = —26dB |H(100)| = 0.0050 = —46dB

C) (5p) Explain what is usually called by a term “white noise”” Explain how such noise signal
n(t) could be used to obtain h(t) for LTI system with unknown characteristics.
White noise is defined by a random signal for with constant power spectral density (the
noise contain the same amount of energy for a given frequency range, for all possible
frequencies). This is a idealised concept. @, = §(t) and ®,,(jw) = Ny. Note: stationary
random signals can not be integrated absolutely, so in general we are not able to calculate
FT for this type of signal (if [t| — oo). Instead we use F'T of the expected value ¢.

yo(t) = n(t)*h(t)

yit) = oyn(7) = yo(t) * n(—1)

yi1(t) = n(t) «h(t) *n(—t) =n(t) xn(—t) x h(t) =
= na(T) x h(t) = 6(t) * h(t) = h(?)

So, since n(t) * n(—t) is an autocorrelation of random noise and it is approaching 6(t), we
can measure impulse response. This can also be explained using FT of autocorrelation
function (power density spectrum ®,,,(jw)).

Q2 (25p) Consider the following difference equation and excitation z[n| (input signal):
y[n] —0.7y[n — 1] + 0.1y[n — 2] = z[n] + x[n — 1]

1 n=2
x[n]:{o n # 2

A) (10p) Find y|n| using z-transform.
Y(2) = 0.7Y(2)2 P+ Y (2)0.1°72 = X(2) + X(2)z "

Y(z) 1+ 271 B 2+z B 2 +z
X(z) 1-07214+01z2 22-072+01 (2—05)(z—0.2)
z  (2—-05)(z—0.2) (2—05)  (2—0.2)

0.5+ 1 0.2+1

k= —— =5 ky=—"—"—=-4

' 05-02 27 02-05
check:

5) 4 52 —1—4z+2 z4+1

(2z—0.5) (2—0.2) (2—05)(¢—0.2) (2—0.5)(z—0.2)



TFE4280 EXAMEN page 3 of 77

So:

h[n] = 5(0.5)"u[n] — 4(0.2)"u[n] = u[n] (5(2)~" — 4(5) "u[n))

h|n| = {1.00 1.70 1.09 0.59 0.31 0.16 }. And since the input z[n] is a time shifted delta

impulse,
yln] = hln] x x[n] = hin — 2]

And y[n] = {0.00 0.00 1.00 1.70 1.09 0.59 0.31 0.16 }
B) (5p) Verify by solving y[n]| directly using the difference equation or by using long division.

yln] = z[n]+zn—1]+0.7y[n — 1] — 0.1y[n — 2]
yl0] = 0+04+0—-0=0

yl] = 040+0-0=0

yll] = 1+404+0-0=1

y2l = 04+14+07-0=17

y[3] = 04+0+0.7-1.7—0.1-1=1.09

yi3] = 04+0+0.7-1.09—0.1-1.7 = 0.593

C) (10p) Consider 4 different signals, z-transforms of which have been represented on the z-
plane below. Sketch approximate discrete time signals corresponding to those transforms.
Explain the difference between discrete time frequency and continuous time frequency. In

g 1F 3 a X
> 2
g Of @ 4 % or @
D i o % i
E -1 .y E -1 XL ]
£ -1k - 6 é = o 2
Real part Real part
T T T T 4 T T T
e i
o = i
o
E 1k | o f . 4 e 1| . . 1 v Ei : L
2 0 e -3 -2 - 0 1 2 3
Real part Real part

Figure 1: Q2c

principle a continuous time domain signal can have any frequency, but once this signal
is discretized, the frequency content of the discrete signal is restricted by the sampling
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frequency. If € is the frequency of continuous time domain signal x(t) and w is the
frequency of the discrete-time signal x(nTy), then

w =T,

and for a discrete-time domain signal,sampled with a sampling time 7 (and corresponding
sampling frequency Qg = 27/Ts), Q € [—Qs/2: Q,/2]; w € [-7 : 7]

© 1F T T T
g ) 1
e =
g0 £
> < 05
E -1 i .
-2 0 2 0
Real part 0 5 10 15 20
n
(a)
T 1 1
Q
-
E 0 X g 0
= <&
E 1 L
-2 0 2 -1
Real part 0 5 10 15 20
n
(b)
t© T
g ! x 1
o 2 -
s 0 S 0 Pe @ Q o o
5 s e oeTe
-} x
£ - . M
-2 0 2 -1
Real part 0 5 10 15 20
n
()
: : r % 50
T ‘
g ?
e 2 S
g 0 =S )] Ya vn r\UU(D & o
£ N 57 T8]
I
E -1t .
1 1 1 X 1 1 1 _50
-3 -2 - 0 1 2 3 0 5 10 15 20
Real part n

(d)

Figure 2: 1) zero frequency Amplitude = 1; 2) maximum frequency, the same amplitude; real
exponentially decaying signal with frequency larger that the one in 4; exponentially increasing signal.

Q3 (25p) Train of delta impulses dr is defined by:

5T = io: 5<t — nTs)

n=—oo

where T} is the time delay between consecutive impulses.

A) (10p) Given that the Fourier transform Fj(w) of sampled function f4(¢) is given by :
fs(t) = f{t)or(t)

Fi(w) = %S Z F(w — nwy)

n=—oo

explain how to reconstruct the continuous-time domain function f(¢) from fy(¢). What
criteria must be satisfied by f,(t) and/or f(t) for this to be possible?

Full reconstruction is only possible for band limited signals (F'(w) = 0 for |w| < Winaz)
which are sampled accordingly to Nenquist condition (ws > 2wynq.). In that case reconstruction
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can be done using a ideal low pass filter, with a cut-off frequency w,/2 and the amplitude
Ts. For such a filter, Fy(w)H(w) = F(w). It can be shown that this corresponds to
sinc interpolation, as such ideal filter will have a impulse response function given by sinc
function. Filtered output will be convolution between sampled signal and “sinc” impulse
response of the filter.

B) (15p) Define DTFT (Descrete Time Fourier Transform) and DFT (Discrete Fourier Transform)
of the sampled signal f(¢) and calculate DTFT for

x[n] =

I 0<n<3
0 otherwise
Can you use the answer to write the expression for DFT of the same signal?.

DTFT can be calculated for discrete, aperiodic signal defined for all n. Resulting transform is
periodic with respect to discrete frequency w.

X () = Z x[n] e 7"
0 2
X(e) = Z x[n] e " = Zx[n]e’jw” = W 4w
n=—oo n=1

The answer can be used to calculate DFT. But in that case the signal x[n] has to be finite
in the time domain. We have to define a new signal, with periodicity N, where N > 3. For
example:

j[n]:{l O<n<3

0 3<n<N
M-1
X[k] = Z ¢—I2mkn/N _ ,=j2k/N | ,—jdmk/N
n=0

This is defined for all k£, but is of course periodic as well.

Fourier Series Fourier Transform
) = 2 B 1) = FHE@Y = 5= [ Fl)eds
1 ’ i -
Fn = % / fpt)emotdt Flw) = F{ft)} = / Flt)e = at
0 —00
Fourier transform of a periodic function:
= 27

F(w) = Z = F(nwp)d(w — nwy)

To

n=—oo
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Q4 (25p) The scheme below illustrates a simple high pass filter.

A) (10p) Find the relationship between input v;(¢) and the output v,(¢) signals for this filter.

d.
v(t) = iR+ LS

dt
Vi(s) = 1(s)R+ sLI(s)
(5) = )
R+ sL
QMQ:L%
Vo(s) = sLI(s)

o Vil(s)
Vols) = SLR + sL
Vo(s)(R + sL) = sLVi(s)
R%@)+L%%L:Ldﬁf)
Ru,(t) + L% - Ld”éit)

B) (10p) You would now like to design discrete time-domain (DSP) filter with similar characteristics.
Derive the difference equation for this system and draw a block diagram for DSP filter.

o LA 2] _ sl =
ylnl(R+ Ljt) =yl — 117 = = (aln] — zfo — 1)
ot (55 ) = ot = 115 + b - ol 1)
ylnl = (aln) = ol = 1] + o — 1)
yln) = (] — 2l — 1] + yln — 1))~
R, + L

T

C) (5p) Write the z-transform of the transfer function. Calculate impulse response h[n| with
0 < n < 3 for this DSP filter using a method of choice.

ay[n] —y[n — 1] = z[n] — x[n — 1]
aY(2) = Y(2)z7 = X(2) — X(2)z!
Y(2) (a — z’l) = X(2) (1 — z’l)
1 -2t

Y(2)/X(2) = H(z) =

o — 2zt

z—1
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e

Figure 3: Q4

U, (t)

Figure 4: Answer Q4. Diagram
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NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
Department of Physics

Contacts during the exam:
Pawel Sikorski, phone: 98486426

KONT EXAM (English)
TFY4280 Signal Processing

August 2013

Examination support materials:

e Simple calculator (according to NTNU exam regulations)

e K. Rottmann: Matematisk formelsamling (eller tilsvarende)

e Barnett and Cronin: Mathematical formulae

e Carl Angell og Bjorn Ebbe Lian: Fysiske stgrrelser og enheter, navn og symboler (eller tilsvarende)

Answer must be written in English or Norwegian. Number of points given to each sub-question is
given in bold font. The maximum score for the exam is 100p. The exam consists of 4 questions.
Attachment: 2 pages with transform tables and properties.

Q1 (30p)
A) The input of an LTI system is
x(t) =€(t) —2e(t — 1) +e(t —2)
where €(t) is the unit step function. If the Laplace transform of the output is given by

(s+2)(1 —e*)?

Y{s) = s2(s+1)2

Determine the transfer function of the system.

The transfer function H(s) = Y'(s)/X(s) is found by taking the Laplace transform of the
input signal.

X(s) = %—26‘5g+e‘235 22(1—26—s+e—2s) 22(1_6_5)2
_ (st —e)?

Y(s) = $2(s+1)?

Hes) = ) _ s+ =e) s - s+2
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We can then find h(t) by finding the inverse transform of H(s)

A B C 1 2 2
SRR A CE TR PRV FER TR

h(t) = 2e(t) — 2e"e(t) — te e(t)

B) Find the the unit step response s(t) for a system described by:
§(t) + 3y(t) + 2y(t) = =(t)
if y(0) =1; 9(0) =0
The Laplace transform of the differential equation gives:
[V (s) — sy(0) — §(0)] + 3[sY (s) — y(0)] +2Y (s) = X (s)
Y(s)(s*+3s+2) — (s +3) = X(s)

s+ 3
YO =X e+ T e 0619

and since X (s) = £ {e(t)} = 1, we have

s?

Y(s) = 1 n s+3
s(s+1)(s+2) (s+1)(s+2)
¥(s) 1+ s>+ 3s _é+ B N C
= s(s+1)(s+2) s s+1 s5+2
0.5 1 0.5
Y(s) = —+

B s+1 s+2
y(t) = 0.5e(t) + e te(t) — 0.5 2 e(t).

Figure 5: s(t) for initial condition: y(0) = 1 and ¢(0) = 0.

Q2 (30p)

A) Two signals x[n| and y[n| are given by:

1 2<n<4

0 otherwise

b—n 0<n<4
z[n] = )

{O otherwise
yln] = {
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. Sketch x[n| and y[n|

. Sketch x|n - k| for k = 3 and k = -3

. Sketch x[-n]

. Sketch x|n|y|n]

B) Convolve signals z[n] = [25 3 -1 0 1] and y[n] = [-2 1 -3 4 2| with indices ranging between
-2:3 and -1:3, respectively.

Q3 (20p)

A) What is an “ergodic random process”; what is a “stationary random process” Ergodic:Expected
values (ensemble average) can be replaced by time average of one sample function.
Stationary: second order expected values only depends on the difference in the observation
time points 7 = t, — t; and not on a particular choice of t; and to =t; + 7

w N =

W

B) Define auto-correlation function (ACF). Sketch ACF for two signals, for which few sample

functions are shown below:
random process A random process B

xl(t) yl(t)
t t

(01 ya(1)
UWUJ M WD d D\; t

xi(?) ¥i(®)

ACF:

Poa(t, t2) = E{x(t1)x(ta) }

Puti2) Pyy(t1s12)

#/V i n
5)

153

Q4 (20p) Given the following unilateral z-transforms:

i)

0.522
X&) = T2
ii)
X, (z) = 0.5z




TFE4280 EXAMEN page 11 of 77?7

e ['ind the inverse z-transforms.

e Evaluate a few values of x1[n] and x3[n|.

0.522 | k2 n koz
(z—1)(z—05) |z—1 2-05

To get k1, we multiply both sizes by (z — 1) and set z =1

0.522

o5 ~ Ml

z=1

k=1

To get k2, we multiply both sizes by (z — 0.5) and set z = 0.5

0.522
o1y e
ko = —0.5
z 0.52 2?2 — 0.5z — 0.52% + 0.5z 22
L —1 z- .5} ST GoDG=05 PG DEZ08),.
So,
x[n] = u[n] — 0.5(0.5)"u[n] = u[n] — (0.5)" u[n]
For ii)
0.5z | Rz koz
(z—1)(z—05) [2—1 +,7;—0.5}

To get k1, we multiply both sizes by (z — 1) and set z =1

0.5z

=05) k1 2]|

z=1
k=1
To get k2, we multiply both sizes by (z — 0.5) and set z = 0.5

0.5z

(Z— 1) = [kQZHz:O.S
ko = —1
2 _ L2
.z 20'5,2 0.5z — 2 +Z:O.5 z
z—1 2z—-.5 (z—1)(z —0.5) (z =1)(2—0.5) o

z[n] = u[n] — (0.5)"u[n]
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Appendix B.1 Bilateral Laplace Transform Pairs

Appendix B.3 Fourier Transform Pairs

(t) X(jw) = F{z()}
5(t) 1
1 2rd(w)
5(t) Jjw
1 t wT
7 (7) ()
1
e(t) mo(w) + 7o
rect(at) ﬁsi (;_a)
: s w
si(at) mrect <%)
n —jmsign(w)
sign(t) ]%
eJwot 2m8(w — wo)
cos(wot) 7[6(w + wo) + 6(w — wo)]
sin(wot) Jm[d(w +wo) = d(w — wo)]
2«
et o >0 peN
_a?t? \/7_1' _ﬁz_
€ Te 4a’

() X(s) = L{z(t)} ROC |
5(t) 1 seC
1
e(t) - Re{s} >0
s
at 1 7 Appendix B.2 Properties of the Bilateral Laplace
il sta et Transform
1
- —at -— -
e~ %e(—t) Tra Re{s} < Re{—a} -
x(t) X(s) = L{z(t)} ROC
1
te(t) = Re{s} >0 ROC S
i Linearity =
N ol A1 (t) + Baa(t) AXy(9) + BXa(s) | ROCLX)
tre(t) sy Re{s} >0 n {X>}
1 De;lay e %X (s) not affected
te=ate(t) Grar Re{s} > Re{—a} z(t — 7)
nl Modulation X(s—a) Ref{a} shifted by
the™e(t) (s+ a.)"+1 Re{s} > Re{—a} e*a(t) . Re{a} to the right
. wo ‘Multiplication by ¢,
sin(wot)e(t) 52+ w2 Re{s} >0 Differentiation in the d
. ——X(s) not affected
8 frequency domain ds
cos(wot)e(t) v Re{s} >0 ta(t)
i ] S
oot | i | Rt || Dl wo 2
- 0 L sX(s) ROC{X}
e~ sin(wot )= (t) m Re{s} > Re{—a} dt
2 — w3 Integration 1 ROC 2 ROC{X
t t)e(t 0 Re{s} >0 ¢ 1 2 {X3
cos(wot)e(t) &+ a2 e{s} e(2)dz ;X N{s : Re{s} > 0}
. 2wps .
tsin(wot)e(t) [T Re{s} >0 Sealin 1 R ROC scaled by a
& —X (*) factor of
z(at) al a o

Appendix B.4

Properties of the Fourier Trans-

form
=(t) X(jw) = Fla(t)}
Linearity Az (t) + Bao(t) AX(jw) + BX2(jw)
Delay z(t —7) e T X (jw)
Modulation edwoty(t) X(j(w — wp))
‘Multiplication by ¢’ .
Differentiation in the tx(t) - dX(.]w)
frequency domain d(jw)
Differentiation in the dz(t) WX (i
time domain dt JwX (jw)
A 1

t X (jw) [776(0.}) + —}

Integration / z(z)dr 1 Jw
oo - 2x(
X () + TX(O)5)
. 1 j

Scaling z(at) mX (%) , a€R\{0}
Convolution @1 (t) * 2a(t) X1 (jw) - Xa(jw)
Multiplication z1(t) - z2(t) %X1 (jw) * X2 (jw)
Duality z1(t) @2 (jw)

z2(jt) 2nz1 (—w)

' z(—t) X(—jw)

Symmetry relations z*(t) X*(—jw)

z*(—t) X*(jw)

Parseval theorem

/:; lz(t))? dt

1 o L2
5 | KGoPa
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Appendix B.6 Properties of the z-Transform

Property z[k] X(z) ROC
. . ROC D
Linearity azy [k]+bza[k] aX1(2) +bXa(z) ROC{;(l JAROC{ Xz}
ROC{z}; separate
Delay zlk — K] 27rX(z) consideration of
z=0and z — o0
Modulation akz k] X (E> ROC= {z z GROC{z}}
a a
Multiplication dX (z) ROC.{:E};  separate
by k ka[k] = consideration of
z=0
Time inversion z[—k] X(z71) ROC={z|s~1€ROC{z}}
. ROC D
Convolution z1[k] * 22 K] Xi1(2) - Xa(z) ROC{;:l }AROC{z2}
e 1. 1 z\1 . | multiply the
Multiplication | z1[k] - z2[k] o7 }{Xl (€)X, (C) Zd(

limits of the ROC

Appendix B.5 Two-sided z-Transform Pairs

2[k] X(2) = Z{z[k]} ROC

6[k] 1 z€C

e[¥] — 2| > 1
a*elk] < 2| > lal
—dbe[—k — 1] Zfa 2| < lal
kelk] ﬁ 2] > 1
kaelk] ﬁi 2| > |al
sin(Qok)e[k] % 2] > 1
cos(Qok)elk] %‘1—1 2] > 1




