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Q1. (30p) System Si{ } is described by a transfer function Hi(s) given
below.

1
s2+3s+2

H(s) =

A. Calculate unit step response for this system

Vi) _ 1
X(s)  s243s5+2
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B. Design a discrete-time system which is equivalent to the system
S1{ } studied above. Find discrete time transfer function H(z)
and again calculate output if a discrete time unit step function
u[n] is given as an input. If necessary use t; = 1s and calculate
only the few first terms of the output signal (0 < n < 3).

Hint: to save time, use a difference equation for the system and
calculate the unit step response in the time domain.

We can do this by first finding the differencial equation describing
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this system:

Y(s) 1
X(s) s2+3s+2
Y (s)(s* 4+ 3s +2) = X(s)
s*Y (s) + 3sY(s) +2Y(s) = X(s)
§(t) +3y(t) + 2y(t) = x(t)
i) = Y =vin =1

yn]—yln—1] _ yn—1]-yn-2]

i(t) = —= - = 5 ] = 2y[n — 1] + y[n - 2))

ts

So the difference equation for this system will be:

y[n] —yln — 1]

t%(y[n] —2yln—1]+y[n—2]) +3 + 2y[n] = z[n]

1 3 2 1
y[n| <t2 +t +2) —yln—1] (t2 +t_) +y[n—2]t—2:a:[n]
To simplify we can evaluate expressions in the brackets

13
(2+ +2>:1+3+2:6

t
2+3 =2+3=5
2 ty) N

S

Lo

2
6yln] 5yl — 1] + yln — 2] = 2[)
yli) = 2l — 1] = gyln — 2] + gl

So, the transfer function can be obtained by taking the z-transform
of this equation:

Gyln] = dy[n — 1] +yln —2] = z[n]
6Y (2) —5Y (2)z ' +Y(2)27* = X(2)
Y(z) 1 2?

X(z) 6-—5214+22 622-5z+1
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Q2.

Q3.

To get the unit step response, we set:

z
X pr—
(2) = ——
22 z
Y p—
() 622 —bz+1z—-1
Y (s) 22 1

z 622 —-5z+1z—1

Unit step response in the time domain: we set z[n] =1 for n >0

1
0 ==

y[0] 5

51 1 11

1l = == - =

vl =55%6= 36

511 11 1 55—-6+36 85
= oo~ gz 4= 2B B
636 66 ' 6 216 216

(10p) Consider a discrete-time LTI system with a impulse response
hln] given by:

where u[n] is the unit step function.

A. Ts this system causal?

B. For what range of a-values is this system BIBO stable?

Since h[n] = 0 for n < 0, the system is causal. For BIBO stability, the
impulse response function needs to be absolutelly integrable.

> lamufnll = 3o 1o’ = Yol = 1= fal <1
n=0 n=0

n=—oo

so the system will be BIBO stable for |a| < 1.

(10p) Find the discrete-time Fourier transform (DTFT) of the rectan-
gular pulse sequence given by
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where u[n] is the unit step function. This discrete-time signal is sampled
with a sampling frequency w,, write the expression for the transform
both in the discrete frequency domain and in the frequency domain.

Note: it is enough to write the aswer as a fraction of two complex
functions and you do not need to arrive at an elegant expression.

Using:
i, 1—a
> o
11—«
n=0

and the definition of DTFT

o

X(e) = FAaly= > aple™ —r<w<n
we get
00 N-—-1
X(e¥) = Z x[n] e 9" = e—Jwn
n=-—oo n=0
. 1—e N
X)) = ———
(™) 1 —e v

where w is the discrete frequency (not the same as the sampling fre-
quency wg) and is related to frequency Q by w = Qt,. So, in the
frequency domain, this will be

" 1 — e—thsN
)((6‘7 ) — —1 — efjﬂts
and
B 2T

ts
Ws

Q4. (10p) Find the inverse z-transform of

X(z) =22 (1 - %z_1> (1-2" 142" 0<z] <0

After multiplication we get:

1 5
X(z):zz+§z—§+z’1
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Q5.

Q6.

Using the definition of the Z-transform we find:

oln] = {1%__21}

(this can also be expressed as a series of discrete-time shifted d[n]-
functions)

(10p) Find the z-transform of the following signal

Uing the definition of the Z-transform we get:

24}y = ) flnl=

n=—0oo

00 0
Zy{z[n]} = Z xn|z™" = Z a "2 =a"2" + a2t a4 =

1 1
= ROC:|zal < 1; |z| < —

Cl-az |al

(20p) If the Fourier transform of a signal z(t) is given by X (w), find
an expression for the Fourier transform X (w) of signal x4(t) defined
as:

5(t) = or(t)z(t)
where
or(t) = ot — kt,)
k=—00
Explain how obtained expression relates to Nyquist sampling rate con-

dition.

HINT: expression for the Fourier transform of a periodic function might
be useful here:

F,(w) = Z wo F'(nwp)d(w — nwy)

n=—0oo



TFY4280 Signal Processing: English page 7 of Igl

Q7.

We need to know FT of a train of delta impulses (¢) (which is not the
same as DTFT of this signal) and then use convolution in the frequency
domain to find the tarnsform of a sampled function z4(t).

]—“{ i (5(t—kts)} = i wsd(w — nw,)

k=—o00 n=-—oo
and
2m
Ws = —
ts
Now we can use convolution:
1 [ee] 3 [ee]
Xs(w) = %X(w) * n:ZOO wsd(w — nws) = ;u_ﬂ n:ZOO F(w — nwy)

Multiple copies of the transform will overlap if the sampleing frequency
is less then 2w,,qz-

(10p) What is defined by a power density spectrum of a random signal
and how can it be calculated? Sketch power density spectrum of white
noise and band-limited white noise signals.

If a random signal is stationary, power density spectrum can be calcu-
lated using the Fourier transform of the autocorrelation function, that
is

Dya(jw0) = F {ipua(r)) 1)
B{a()P} = pue(0) = o- / D) | =5 / B (o) o

And therefore ®,,(jw) is the Power density spectrum. For signals for
which Fourier transform exists, this can also be calculated by using the
Parseval’s theorem. For white noise signal (for which the autocorrela-
tion function is a delta function), the power density is the same for all
frequency ranges, so

¢, (jw) =Ny —o00<w< o0 (2)
for band-limited white noise,

(I)xw(jw) = NO — Wnar < W < Wnax (3)
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Appendix B.1 Bilateral Laplace Transform Pairs

(1) X(s) = L{z(8)} ROC
a(t) 1 seC
£(t) é Ref{s} >0
i 3 i i Laplace
() 1 Refs} > Re{—a} Appendix B.2 Properties of the Bilateral Lapla
sta Transform
_emtte(—p) - Jlr - Re{s} < Re{—a}
2(t) X(s) = £{z(t)} | ROC
1
t=(t) = Re{s} >0 Lincarity ROC 2
AXi(s) + BXa(s) | ROC{X1}
]
me(t) = Re{s} >0 Az (t) + B (1) AROC{Xs}
1 Delay e TX (s) not affected
te="te(t) TR Re{s} > Re{-a} z(t - 7)
nl Modulation X(s—a) Re{a} shifted by
tremete(t) 7 ﬂ-)nﬂ Re{s} > Re{-a} eta(t) Re{a} to the right
. - wo ‘Multiplication by ¢’,
sin(wot)e(t) 52+ wd Re{s} >0 Differentiation in the d
. frequency domain —HYSX(S) not affected
s
cos(wot)e(t) g Re{s} >0 ta(t)
- N T
e~ cos(wot)e(t) ﬁ(s +Sa)2(1 = Re{s} > Re{—a} ]t)i:::rng:;fn in the ROC >
— o(t) sX(s) ROC{X}
~at sin(s —_— Re{— at
e~ sin(wot)e(t) GrarTa? Re{s} > Re{—a} Idt :
2 —wl ntegration 1 ROC D ROC{X
t e (t o Re(s} >0 t 1 2 {x}
cos(wot)e(t) (ErR)? e{s} / o(D)de sX(s) s : Re{s} > 0}
2wps Sad
tsin(wot)=(t) s Re{s} >0 .
(wot) (2 +wp)? Sealing 1, (f) Eggrsg?led by a
z(at) a] a .

Appendix B.3 Fourier Transform Pairs Appendix B.4 Properties of the Fourier Trans-

form
«(0) X(jw) = Fla®)} _
(t) X(jw) = Fla(t)}
a(t) 1
Linearity Az, (t) + Baa(t) AX;(jw) + BX3(jw)
1 2m6(w)
Delay z(t— ) eTITX (jw)
5(t) Jw
Modulation elwoty(t) X(j(w —wo))
L ( ! ) (“’T)
= — o ‘Multiplication by ¢ .
2
T T ul Differentiation in the ta(t) _aXGw)
. (t) 5 (u)) + ]% frequency domain d(jw)
o Differentiation in the da(t) X ()
I (hadll time domain dt
rect(at) \aLSl (2(1)
A (@ ‘ X(jw) [mﬁ'(w) + _iJ
si(at) fal rect (ga) Integration / z(z)dz 1 s
1 = = —X(jw)+7X(0)d(w)
N Jw
h —jmsign(w)
2 Scaling 2(at) ‘%‘X (%’) . aeR\{0}
sign(t) 7w
3 Convolution 1 (t) * z2(t) X1(jw) - Xa(jw)
edwot 276 (w — wo)
Multiplication 21 (t) - m2(t) %Xl (jw) * X2 (jw)
cos(wot) 7[5 (w +wo) + 8(w — wo)]
Duality Tl(t) 2(jw)
i ¢ 2y (—
cineot) 7150+ ) — 50 — wo)] @2(jt) 2 (—w)
z(—t) X(=jw)
oy 2 Symmetry relations z*(t) X*(—jw)
€ ,a>0 it z*(=t) X*(jw)
e VE Parseval theorem / leF e o [ IxGeyPas
p - o
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Appendix B.6 Properties of the z-Transform

Property [k] X(2) ROC
N . ROC 2
Linearity axy [k]+bxa[k] aX(z) 4+ bX2(2) ROC{;(l JAROC{X,}
ROC{z}; separate
Delay [k — K] 277X (2) consideration of
z=0and z = o
Modulation akalk] x(2 ROC= {z Z eROC(z}}
a a
T . ROC{z}; separate
Multiplicat; dX(z
Yu.]p ieasion kalk] -z ) consideration of
by k dz =0
Time inversion z[~k] Xz ROC={z |2~ 'eROC{a}}
. ROC 2
Convolution 1 [k] * 22 [k] X1(2) - Xa(z) ROC{;I)mROC{TQ)
RTRI . 1 2\ 1, .| multiply the
Multiplication | a1[k]-a2lk] | 5 fxl(c)xz( 4) R

limits of the ROC

Appendix B.5 Two-sided z-Transform Pairs

(k] X(2) = Z{a[k]} ROC

d[k] 1 zeC
<lk] . = - 2 >1
a*elk) = 2| > lal
—abe[—k - 1] P Z - 2 < |al
kelk] ﬁ lz] > 1

az
kaFelk] G—ar |z] > a]
; zsin
sin(Qok)z[k] m Jz| >1
2(z — cos

cos(Qok)elk] W lz| >1




