

Examination paper for TFY4280 Signal Processing

Academic contact during examination: Pawel Sikorski, phone: 98486426

Examination date: 02.06.2017

Examination time (from-to): 0900 - 1300

Permitted examination support material:

- Simple calculator (according to NTNU exam regulations)
- K. Rottmann: Matematisk formelsamling or an equilivalent, for example: Formulaires et tables: mathématiques, physique, chimie. Editions du Tricorne, Genève.
- Barnett and Cronin: Mathematical formulae
- Carl Angell og Bjørn Ebbe Lian: Fysiske størrelser og enheter, navn og symboler

Other information about the examp paper:

- Language: English
- Number of pages (including this page and attachments): 10
- Answer must be written in English or Norwegian. Number of points given to each question is given in bold font. The maximum score for the exam is 100p.
- Attachment: 2 pages with transform tables and properties.

Checked by:	
Date:	Signature:

Q1. (35p) Consider a simple circuit shown below, for which $R=10,\,C=0.0235$ and L=10 in the appropriate s.i. units.

A. Write a differential equation which relates the output $v_o(t)$ with the input $v_i(t)$ for this system. (5p)

Answer:

$$Ri(t) + L\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{1}{C} \int_{0}^{t} i(\tau) \mathrm{d}\tau = v_{i}(t)$$
$$v_{o}(t) + L/R\frac{\mathrm{d}v_{o}(t)}{\mathrm{d}t} + \frac{1}{RC} \int_{0}^{t} v_{o}(\tau) \mathrm{d}\tau = v_{i}(t)$$

B. Give a definitions of an impulse response function, a transfer function and a frequency response function. (5p)

Answer:

$$h(t) = S\{\delta(t)\}$$

$$H(s) = \frac{Y(s)}{X(s)}$$

$$H(j\omega) = H(s)|_{s=j\omega}$$

C. Calculate the impulse response function for the system given above. It is sufficient to express h(t) as a sum of complex exponential functions. Explain how you would used this function to calculate the output signal y(t) for a given input signal x(t). (10p)

Answer:

$$Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C} \int_{0}^{t} i(\tau)d\tau = v_{i}(t)$$

$$v_{o}(t) + L/R\frac{dv_{o}(t)}{dt} + \frac{1}{RC} \int_{0}^{t} v_{o}(\tau)d\tau = v_{i}(t)$$

$$V_{o}(s) + \frac{sL}{R}V_{o}(s) + \frac{1}{sRC}V_{o}(s) = V_{i}(s)$$

$$V_{o}\left(1 + \frac{sL}{R} + \frac{1}{sRC}\right) = V_{i}(s)$$

$$H(s) = \frac{1}{1 + \frac{sL}{R} + \frac{1}{sRC}} = \frac{s}{s + \frac{s^{2}L}{R} + \frac{1}{RC}} = \frac{\frac{R}{L}s}{s^{2} + \frac{R}{L}s + \frac{1}{LC}}$$

For given values of the components we get R/L=1 and 1/CL=4.25

$$H(s) = \frac{s}{s^2 + s + 4.25}$$

Which has zeros at

$$p_{1,2} = \frac{-b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = -0.5 \pm \frac{\sqrt{1 - 17}}{2} = -0.5 \pm 2j$$

So we can write the transfer functions as:

$$H(s) = \frac{A}{s+0.5-2j} + \frac{B}{s+0.5+2j} = \frac{s}{s^2+s+4.25} = \frac{s}{(s+0.5-2j)(s+0.5+2j)}$$

$$A = \frac{s}{(s+0.5+2j)} \Big|_{s=-0.5+2j} = \frac{-0.5+2j}{4j} = 0.5 + 0.125j$$

$$B = \frac{s}{(s+0.5-2j)} \Big|_{s=-0.5-2j} = \frac{-0.5-2j}{-0.5-2j+0.5-2j} = 0.5 - 0.125j$$

Impulse response will be the inverse Laplace transform of this function:

$$H(s) = \frac{0.5 + 0.125j}{s + 0.5 - 2j} + \frac{0.5 - 125j}{s + 0.5 + 2j}$$
$$h(t) = \varepsilon(t) \left(Ae^{-(0.5 - 2j)t} + Be^{-(0.5 + 2j)t} \right)$$

D. Calculate the transfer function and the frequency response function of this system. For the frequency response function, you do not need to arrive at a elegant expressions. (5p)

Answer: For the frequency response, we set $s = j\omega$

$$H(j\omega) = \frac{j\omega}{j\omega^2 + j\omega + 4.25}$$
$$= \frac{0.5 + 0.125j}{j\omega + 0.5 - 2j} + \frac{0.5 - 125j}{j\omega + 0.5 + 2j}$$

E. Draw a zero/poles diagram. (5p)

Answer: The zeros/pole diagram includes zero at the origin and two poles at $s=-0.5\pm2j$

F. What kind of circuit is this? (5p)

Answer: Band pass filter. We can see it from the fact that $H(j\omega) = 0$ for $\omega = 0$ and $\omega = \infty$.

Q2. (10p) Find the z-transform of the following signal:

$$x[n] = \{0, 1, 2, 3, \underline{4}, 3, 2, 1, 0\}$$

Answer: Using definition of the z-transform we can write:

$$X(z) = \mathcal{Z}_b \{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] z^{-n} =$$

$$= x[-3] z^3 + x[-2] z^2 + x[-1] z^1 + x[0] z^0 + x[1] z^{-1} + x[2] z^{-2} + x[3] z^{-3} =$$

$$= 1z^3 + 2z^2 + 3z^1 + 4z^0 + 3z^{-1} + 2z^{-2} + 1z^{-3}$$

Q3. (20p) Consider a discrete-time system described by a block diagram shown below.

A. Use this block diagram to calculate a discrete-time impulse response function for this system. Calculate for n < 6. (10p)

Answer: First we need a difference equation, then we can just set input as $\delta[0]$ and calculate the impulse response. From the diagram:

$$y[n] = x[n] + 3x[n-1] + x[n-2] - y[n-1] + 2y[n-2]$$

From that equation we get:

$$\begin{array}{lll} h[0] &=& \delta[0] + +3\delta[-1] + \delta[-2] - h[-1] + 2h[-2] = 1 \\ h[1] &=& \delta[1] + 3\delta[0] + \delta[-1] - h[0] + 2h[-1] = 3 - 1 = 2 \\ h[2] &=& \delta[2] + 3\delta[1] + \delta[0] - h[1] + 2h[0] = 1 - 2 + 2 = 1 \\ h[3] &=& \delta[3] + 3\delta[2] + \delta[1] - h[2] + 2h[1] = -1 + 4 = 3 \\ h[4] &=& \delta[4] + 3\delta[3] + \delta[2] - h[3] + 2h[2] = -3 + 2 = -1 \\ h[5] &=& \delta[5] + 3\delta[4] + \delta[3] - h[4] + 2h[3] = 1 + 6 = 7 \end{array}$$

B. Use a method of choice to determine output signal y[n] for n < 8 and the input signal given below. (10p)

$$x[n] = \{\underline{1}, 0, 1, 0\}$$
 and 0 otherwise.

Q4. (10p) Determine the convolution

$$y(t) = e^{-at} \epsilon(t) * \epsilon(t)$$

using direct method (definition) and using Fourier transform method.

Answer: Using the definition we find for $t \ge 0$ (the convolution is zero for t < 0):

$$y(t) = \int_{-\infty}^{\infty} e^{-a(t-\beta)} \epsilon(t-\beta) \epsilon(\beta) d\beta = e^{-at} \int_{-\infty}^{\infty} e^{a\beta} \epsilon(t-\beta) \epsilon(\beta) d\beta = e^{-at} \int_{0}^{t} e^{a\beta} d\beta =$$
$$= e^{-at} \frac{1}{a} e^{a\beta} \Big|_{\beta=0}^{\beta=t} = \frac{1}{a} (1 - e^{-at})$$

so

$$y(t) = \frac{1}{a}(1 - e^{-at})\epsilon(t)$$

Using transform method:

$$Y(j\omega) = \mathcal{F}\left\{e^{-at}\epsilon(t)\right\} \mathcal{F}\left\{\epsilon(t)\right\} = \frac{1}{a+j\omega} \left[\pi\delta(\omega) + \frac{1}{j\omega}\right] = \frac{\pi\delta(\omega)}{a} + \frac{1}{j\omega(a+j\omega)}$$

$$\frac{1}{j\omega(a+j\omega)} = \frac{A}{j\omega} + \frac{B}{(a+j\omega)} = \frac{A(a+j\omega) + Bj\omega}{j\omega(a+j\omega)}$$

$$A + B = 0 \quad Aa = 1$$

$$\frac{1}{j\omega(a+j\omega)} = \frac{1}{aj\omega} - \frac{1}{a(a+j\omega)}$$

$$Y(j\omega) = \frac{1}{a} \left[\pi\delta(\omega) + \frac{1}{j\omega}\right] - \frac{1}{a} \frac{1}{(a+j\omega)}$$

$$y(t) = \frac{1}{a}\epsilon(t) - \frac{1}{a}e^{-at}\epsilon(t)$$

Q5. (25p)

A. Use definition of of a unilateral z-transform (\mathcal{Z}) to determine

$$\mathcal{Z}\left\{u[n]e^{\beta n}\right\} =$$

and then use this to calculate $\mathcal{Z}\{u[n]cos(bn)\}$ (10p)

Answer:

$$\begin{split} X(z) &=& \mathcal{Z}\left\{x[n]\right\} = \sum_{n=0}^{\infty} x[n]\,z^{-n} = \sum_{n=0}^{\infty} e^{\beta n} z^{-n} = \\ &=& 1 + e^{1\beta} z^{-1} + e^{2\beta} z^{-2} + e^{3\beta} z^{-3} + \ldots = \frac{1}{1 - e^{\beta} z^{-1}} = \frac{z}{z - e^{\beta}} \end{split}$$

With a region of convergence

$$|e^{\beta}z^{-1} < 1|$$

ROC: $|e^{\beta}| < |z|$

This transform has a pole at $z = e^{\beta}$ and a zero at z = 0.

$$\cos bn = \frac{1}{2} \left[e^{jbn} + e^{-jbn} \right]$$

$$\mathcal{Z} \left\{ u[n] \cos bn \right\} = \frac{1}{2} \mathcal{Z} \left\{ e^{jbn} \right\} + \frac{1}{2} \mathcal{Z} \left\{ e^{-jbn} \right\} =$$

$$= \frac{1}{2} \left(\frac{z}{z - e^{jb}} \right) + \frac{1}{2} \left(\frac{z}{z - e^{-jb}} \right) =$$

$$= \frac{z}{2} \left(\frac{z - e^{-jb} + z - e^{jb}}{(z - e^{jb})(z - e^{-jb})} \right) = \frac{z(z - \cos b)}{z^2 - 2z \cos b + 1}$$

B. Zeros/poles diagram on the z-plane for a transfer function H(z) of a LTI discrete-time system is given below. Use this diagram to find the difference equation which describes this system. (15p)

Answer: Signal described by this diagram as a transfer functions with poles at $z = \pm j = e^{\pm j\pi/2}$. Using the formula derived above we can write:

$$H(z) = \frac{z}{z - e^{j\pi/2}} + \frac{z}{z - e^{-j\pi/2}} = 2\frac{z(z - \cos(\pi/2))}{z^2 - 2z\cos(\pi/2) + 1} = 2\frac{z^2}{z^2 + 1}$$

Using the transfer function for a discrete-time LTI system:

$$H(z) = \frac{Y(z)}{X(z)} = 2\frac{z^2}{z^2 + 1}$$

$$Y(z)(z^2 + 1) = X(z)[2z^2]$$

$$Y(z)(1 + z^{-2}) = 2X(z)$$

$$y[n] + y[n - 2] = 2x[n]$$

$$y[n] = 2x[n] - y[n - 2]$$

Appendix B.1 Bilateral Laplace Transform Pairs

x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
$\delta(t)$	1	$s \in \mathbb{C}$
$\varepsilon(t)$	$\frac{1}{s}$	$\operatorname{Re}\{s\} > 0$
$e^{-at}\varepsilon(t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$-e^{-at}\varepsilon(-t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\}<\operatorname{Re}\{-a\}$
$t\varepsilon(t)$	$\frac{1}{s^2}$	$\operatorname{Re}\{s\} > 0$
$t^n \varepsilon(t)$	$\frac{n!}{s^{n+1}}$	$\text{Re}\{s\} > 0$
$te^{-at}\varepsilon(t)$	$\frac{1}{(s+a)^2}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$t^n e^{-at} \varepsilon(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$Re\{s\} > 0$
$\cos(\omega_0 t)\varepsilon(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$e^{-at}\cos(\omega_0 t)\varepsilon(t)$	$\frac{s+a}{(s+a)^2 + \omega_0^2}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$e^{-at}\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	$\operatorname{Re}\{s\}>\operatorname{Re}\{-a\}$
$t\cos(\omega_0 t)\varepsilon(t)$	$\frac{s^2 - \omega_0^2}{(s^2 + \omega_0^2)^2}$	$\operatorname{Re}\{s\} > 0$
$t\sin(\omega_0 t)\varepsilon(t)$	$\frac{2\omega_0 s}{(s^2 + \omega_0^2)^2}$	$Re\{s\} > 0$

Appendix B.3 Fourier Transform Pairs

x(t)	$X(j\omega) = \mathcal{F}\{x(t)\}$	
$\delta(t)$	1	
1	$2\pi\delta(\omega)$	
$\dot{\delta}(t)$	jω	
$\frac{1}{T}$ $\sqcup \sqcup \left(\frac{t}{T}\right)$	$\perp \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \! \! \! \!$	
$\varepsilon(t)$	$\pi\delta(\omega) + \frac{1}{j\omega}$	
rect(at)	$\frac{1}{ a }$ si $\left(\frac{\omega}{2a}\right)$	
si(at)	$\frac{\pi}{ a } \mathrm{rect}\left(\frac{\omega}{2a}\right)$	
$\frac{1}{t}$	$-j\pi \mathrm{sign}(\omega)$	
$\operatorname{sign}(t)$	$\frac{2}{j\omega}$	
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$	
$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
$e^{-\alpha t }, \ \alpha > 0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$	
$e^{-a^2t^2}$	$\frac{\sqrt{\pi}}{a}e^{-\frac{\omega^2}{4a^2}}$	

 $\begin{array}{lll} {\bf Appendix~B.2} & {\bf Properties~of~the~Bilateral~Laplace} \\ & {\bf Transform} \end{array}$

x(t)	$X(s) = \mathcal{L}\{x(t)\}$	ROC
Linearity $Ax_1(t) + Bx_2(t)$	$AX_1(s) + BX_2(s)$	$\begin{array}{c c} \operatorname{ROC} & \supseteq \\ \operatorname{ROC}\{X_1\} \\ \cap \operatorname{ROC}\{X_2\} \end{array}$
Delay $x(t-\tau)$	$e^{-s\tau}X(s)$	not affected
Modulation $e^{at}x(t)$	X(s-a)	$Re\{a\}$ shifted by $Re\{a\}$ to the right
'Multiplication by t ', Differentiation in the frequency domain $tx(t)$	$-\frac{d}{ds}X(s)$	not affected
Differentiation in the time domain $\frac{d}{dt}x(t)$	sX(s)	$ \begin{array}{ccc} \operatorname{ROC} & \supseteq \\ \operatorname{ROC}\{X\} \end{array} $
Integration $\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{s}X(s)$	$ ROC \supseteq ROC\{X\} \\ \cap \{s : Re\{s\} > 0\} $
Scaling $x(at)$	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC scaled by a factor of

Appendix B.4 Properties of the Fourier Transform

	x(t)	$X(j\omega) = \mathcal{F}\{x(t)\}$
Linearity	$Ax_1(t) + Bx_2(t)$	$AX_1(j\omega) + BX_2(j\omega)$
Delay	$x(t-\tau)$	$e^{-j\omega \tau}X(j\omega)$
Modulation	$e^{j\omega_0t}x(t)$	$X(j(\omega - \omega_0))$
'Multiplication by t ' Differentiation in the frequency domain	tx(t)	$-\frac{dX(j\omega)}{d(j\omega)}$
Differentiation in the time domain	$\frac{dx(t)}{dt}$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^t x(\tau) d\tau$	$X(j\omega) \left[\pi \delta(\omega) + \frac{1}{j\omega} \right]$ $= \frac{1}{j\omega} X(j\omega) + \pi X(0)\delta(\omega)$
Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right), a\in \mathrm{IR}\backslash\{0\}$
Convolution	$x_1(t) * x_2(t)$	$X_1(j\omega)\cdot X_2(j\omega)$
Multiplication	$x_1(t) \cdot x_2(t)$	$\frac{1}{2\pi}X_1(j\omega)*X_2(j\omega)$
Duality	$x_1(t)$ $x_2(jt)$	$\begin{array}{c} x_2(j\omega) \\ 2\pi x_1(-\omega) \end{array}$
Symmetry relations	$x(-t)$ $x^*(t)$ $x^*(-t)$	$X(-j\omega) \ X^*(-j\omega) \ X^*(j\omega)$
Parseval theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$

Appendix B.6 Properties of the z-Transform

Property	x[k]	X(z)	ROC
Linearity	$ax_1[k]+bx_2[k]$	$aX_1(z) + bX_2(z)$	$ROC \supseteq ROC\{X_1\} \cap ROC\{X_2\}$
Delay	$x[k-\kappa]$	$z^{-\kappa}X(z)$	$\mathrm{ROC}\{x\};$ separate consideration of $z=0$ and $z\to\infty$
Modulation	$a^kx[k]$	$X\left(\frac{z}{a}\right)$	$ROC = \left\{ z \left \frac{z}{a} \in ROC\{x\} \right\} \right\}$
Multiplication by k	kx[k]	$-z\frac{dX(z)}{dz}$	$ROC\{x\};$ separate consideration of $z = 0$
Time inversion	x[-k]	$X(z^{-1})$	$ROC = \{z \mid z^{-1} \in ROC\{x\}\}\$
Convolution	$x_1[k] * x_2[k]$	$X_1(z) \cdot X_2(z)$	$\operatorname{ROC}\supseteq \operatorname{ROC}\{x_1\}\cap\operatorname{ROC}\{x_2\}$
Multiplication	$x_1[k] \cdot x_2[k]$	$\boxed{\frac{1}{2\pi j} \oint X_1(\zeta) X_2\Big(\frac{z}{\zeta}\Big) \frac{1}{\zeta} d\zeta}$	multiply the limits of the ROC

Appendix B.5 Two-sided z-Transform Pairs

x[k]	$X(z) = \mathcal{Z}\{x[k]\}$	ROC
$\delta[k]$	1	$z\in \mathbf{C}$
$\varepsilon[k]$	$\frac{z}{z-1}$	z > 1
$a^k \varepsilon[k]$	$\frac{z}{z-a}$	z > a
$-a^k \varepsilon [-k-1]$	$\frac{z}{z-a}$	z < a
$k\varepsilon[k]$	$\frac{z}{(z-1)^2}$	z > 1
$ka^k\varepsilon[k]$	$\frac{az}{(z-a)^2}$	z > a
$\sin(\Omega_0 k)\varepsilon[k]$	$\frac{z\sin\Omega_0}{z^2 - 2z\cos\Omega_0 + 1}$	z > 1
$\cos(\Omega_0 k)\varepsilon[k]$	$\frac{z(z - \cos \Omega_0)}{z^2 - 2z \cos \Omega_0 + 1}$	z > 1